版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
常州市正衡中学人教版七年级下册数学期末压轴难题试卷一、选择题1.下列事件中,不是必然事件的是()A.同旁内角互补 B.对顶角相等C.等腰三角形是轴对称图形 D.垂线段最短2.下列四幅图案中,通过平移能得到图案E的是()A.A B.B C.C D.D3.坐标平面内的下列各点中,在轴上的是()A. B. C. D.4.下列命题是假命题的是()A.同位角相等,两直线平行B.三角形的一个外角等于与它不相邻的两个内角的和C.平行于同一条直线的两条直线平行D.平面内,到一个角两边距离相等的点在这个角的平分线上5.如图,直线、相交于点,.若,则等于()A.70° B.110° C.90° D.120°6.下列说法错误的是()A.的平方根是 B.的值是C.的立方根是 D.的值是7.如图,将一张长方形纸片沿折叠.使顶点,分别落在点,处,交于点,若,则()A. B. C. D.8.如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1)…,按照这样的规律下去,点A100的坐标为()A.(101,100) B.(150,51) C.(150,50) D.(100,53)二、填空题9.已知≈18.044,那么±≈___________.10.若点与关于轴对称,则____________________________.11.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=130°,∠C=30°,则∠DAE的度数是__________.12.如图,a∥b,∠1=68°,∠2=42°,则∠3=_____________.13.如图,将一条对边互相平行的长方形纸带进行两次折叠,折痕分别为、,若,且,则_____.14.用表示一种运算,它的含义是:,如果,那么__________.15.若点P(a+3,2a+4)在y轴上,则点P到x轴的距离为________.16.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点从原点出发,以每秒1个单位长度的速度沿着等边三角形的边“”的路线运动,设第秒运动到点(为正整数),则点的坐标是______.三、解答题17.(1)计算:(2)计算:(3)已知,求的值.18.已知m+n=2,mn=-15,求下列各式的值.(1);(2).19.学习如何书写规范的证明过程,补充完整,并完成后面问题.已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,∠A=∠FDE.求证:FD∥AC.证明:∵DE∥BA(已知)∴∠BFD=()又∵∠A=∠FDE∴=(等量代换)∴FD∥CA()模仿上面的证明过程,用另一种方法证明FD∥AC.20.已知在平面直角坐标系中有三点,,,请回答如下问题:(1)在平面直角坐标系内描出、、,连接三边得到;(2)将三点向下平移2个单位长度,再向左平移1个单位,得到;画出,并写出、、三点坐标;(3)求出的面积.21.如图,数轴的正半轴上有,,三点,点,表示数和.点到点的距离与点到点的距离相等,设点所表示的数为.(1)请你求出数的值.(2)若为的相反数,为的绝对值,求的整数部分的立方根.二十二、解答题22.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为dm.(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆C正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?二十三、解答题23.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯射出的光束自顺时针旋转至便立即回转,灯射出的光束自顺时针旋转至便立即回转,两灯不停交叉照射巡视.若灯射出的光束转动的速度是/秒,灯射出的光束转动的速度是/秒,且、满足.假定这一带水域两岸河堤是平行的,即,且.(1)求、的值;(2)如图2,两灯同时转动,在灯射出的光束到达之前,若两灯射出的光束交于点,过作交于点,若,求的度数;(3)若灯射线先转动30秒,灯射出的光束才开始转动,在灯射出的光束到达之前,灯转动几秒,两灯的光束互相平行?24.课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程解:过点A作ED∥BC,∴∠B=∠EAB,∠C=又∵∠EAB+∠BAC+∠DAC=180°∴∠B+∠BAC+∠C=180°解题反思:从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB)深化拓展:(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°,点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.25.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.(1)求证:∠BED=90°;(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小;(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论:.26.已知在中,,点在上,边在上,在中,边在直线上,;(1)如图1,求的度数;(2)如图2,将沿射线的方向平移,当点在上时,求度数;(3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数.【参考答案】一、选择题1.A解析:A【分析】必然事件是指在一定条件下,一定发生的事件,即发生的概率是1的事件,据此判断即可解答.【详解】解:A、不是必然事件,当前提条件是两直线平行时,才会得到同旁内角互补,符合题意;B、为必然事件,不合题意;C、为必然事件,不合题意;D、为必然事件,不合题意.故选A.【点睛】本题考查了必然事件的定义,同时也考查了同旁内角,对顶角的性质,等腰三角形的性质,垂线段的性质.必然事件是指在一定条件下,一定发生的事件,即发生的概率是1的事件.2.B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件解析:B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选:B【点睛】在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移.平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离.3.A【分析】根据y轴上点的横坐标为0,即可判断.【详解】解:∵y轴上点的横坐标为0,∴点符合题意.故选:A.【点睛】本题主要考查了点的坐标的特征,解题的关键是熟练掌握y轴上点的横坐标为0.4.D【分析】利用平行线的判定、三角形的外角的性质、角平分线的判定等知识分别判断后即可确定正确的选项.【详解】解:A、同位角相等,两直线平行,正确,是真命题,不符合题意;B、三角形的一个外角等于与它不相邻的两个内角的和,正确,是真命题,不符合题意;C、平行于同一条直线的两条直线平行,正确,是真命题,不符合题意;D、角的内部,到一个角两边距离相等的点在这个角的平分线上,故原命题错误,是假命题,符合题意;故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解平行线的判定、三角形的外角的性质、角平分线的判定等知识,难度不大.5.B【分析】先根据平行线的性质得到,然后根据平角的定义解答即可.【详解】解:∵,∴,∵,∴.故选:B.【点睛】本题主要考查了平行线的性质定理和平角的性质,灵活运用平行线的性质成为解答本题的关键.6.B【分析】根据算术平方根与平方根、立方根的性质逐项判断即可得.【详解】A、的平方根是,此项说法正确;B、的值是4,此项说法错误;C、的立方根是,此项说法正确;D、的值是,此项说法正确;故选:B.【点睛】本题考查了算术平方根与平方根、立方根的性质,熟练掌握算术平方根与平方根、立方根的性质是解题关键.7.B【分析】根据两直线平行,内错角相等求出,再根据平角的定义求出,然后根据折叠的性质可得,进而即可得解.【详解】解:∵在矩形纸片中,,,,,∵折叠,∴,.故选:B.【点睛】本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出是解题的关键,另外,根据折叠前后的两个角相等也很重要.8.B【分析】观察图形得到偶数点的规律为,A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1),由100是偶数,A100的横坐标应该是100÷2×3,纵坐标应该是100÷2+1解析:B【分析】观察图形得到偶数点的规律为,A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1),由100是偶数,A100的横坐标应该是100÷2×3,纵坐标应该是100÷2+1,则可求A100(150,51).【详解】解:观察图形可得,奇数点:A1(2,0),A3(5,1),A5(8,2),…,A2n-1(3n-1,n-1),偶数点:A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1),∵100是偶数,且100=2n,∴n=50,∴A100(150,51),故选:B.【点睛】本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键.二、填空题9.±1.8044【详解】∵,∴,即.故答案为±1.8044解析:±1.8044【详解】∵,∴,即.故答案为±1.804410.0【分析】根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.【详解】∵点与关于轴对称∴∴,故答案为:0.【点睛】本题主要考查了平面直角坐标系内点解析:0【分析】根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.【详解】∵点与关于轴对称∴∴,故答案为:0.【点睛】本题主要考查了平面直角坐标系内点的轴对称,熟练掌握相关点的轴对称特征是解决本题的关键.11.5°【分析】根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE-∠CAD,代入数据进行计算即可得解.【详解】∵AD⊥BC,∠C=30°,∴∠C解析:5°【分析】根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE-∠CAD,代入数据进行计算即可得解.【详解】∵AD⊥BC,∠C=30°,∴∠CAD=90°-30°=60°,∵AE是△ABC的角平分线,∠BAC=130°,∴∠CAE=∠BAC=×130°=65°,∴∠DAE=∠CAE-∠CAD=65°-60°=5°.故答案为:5°.【点睛】本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.12.110°【分析】如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5.【详解】如图,∵a∥b,∴∠4=∠1=68°,∴∠5=∠4=68解析:110°【分析】如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5.【详解】如图,∵a∥b,∴∠4=∠1=68°,∴∠5=∠4=68°,∵∠2=42°,∴∠5+∠2=68°+42°=110°,∵a∥b,∴∠3=∠2+∠5,∴∠3=110°,故答案为:110°.【点睛】本题考查了平行线的性质,对顶角相等,熟练掌握平行线的性质,对顶角相等是解题的关键.13.68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,解析:68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,∴∠4=∠3=∠1=56°,由折叠可得,∠DCF=∠5,∵CD∥BE,∴∠DCF=∠4=56°,∴∠5=56°,∴∠2=180°-∠DCF-∠5=180°-56°-56°=68°,故答案为:68°.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握:两直线平行,同位角相等;两直线平行,内错角相等.14.【分析】按照新定义的运算法先求出x,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x的解析:【分析】按照新定义的运算法先求出x,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x的值.15.2【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.【详解】∵点P(a+3,2a+4)在y轴上∴a+3=0,解得:a=-3∴P(0,-2)∴点P到x轴的距离解析:2【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.【详解】∵点P(a+3,2a+4)在y轴上∴a+3=0,解得:a=-3∴P(0,-2)∴点P到x轴的距离为:2故答案为:2【点睛】本题考查坐标点与坐标轴的关系,注意,点到坐标轴的距离一定是非负的.16.【分析】通过观察可得,An每6个点的纵坐标规律:,0,,0,-,0,点An的横坐标规律:1,2,3,4,5,6,…,n,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,1解析:【分析】通过观察可得,An每6个点的纵坐标规律:,0,,0,-,0,点An的横坐标规律:1,2,3,4,5,6,…,n,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,1秒钟走一段,P运动每6秒循环一次,点P运动n秒的横坐标规律:,1,,2,,3,…,,点P的纵坐标规律:,0,,0,0,0,…,确定P2021循环余下的点即可.【详解】解:∵图中是边长为1个单位长度的等边三角形,∴A2(1,0)A4(2,0)A6(3,0)…∴An中每6个点的纵坐标规律:,0,,0,﹣,0,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,1秒钟走一段,P运动每6秒循环一次点P的纵坐标规律:,0,,0,-,0,…,点P的横坐标规律:,1,,2,,3,…,,∵2021=336×6+5,∴点P2021的纵坐标为,∴点P2021的横坐标为,∴点P2021的坐标,故答案为:.【点睛】本题考查点的规律,平面直角坐标系中点的特点及等边三角形的性质,确定点的坐标规律是解题的关键.三、解答题17.(1)2;(2)6;(3)或【解析】【分析】(1)利用乘法分配律给括号中各项都乘以,把化为最简二次根式即可得到结果;(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;解析:(1)2;(2)6;(3)或【解析】【分析】(1)利用乘法分配律给括号中各项都乘以,把化为最简二次根式即可得到结果;(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;(3)直接利用平方根的定义计算得出答案.【详解】解:(1),;(2),,;(3)∵∴解得:或.故答案为:(1)2;(2)6;(3)或【点睛】本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键.18.(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)====-11;(2)=解析:(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)====-11;(2)====68【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.19.(1)∠FDE,两直线平行,内错角相等;∠A,∠BFD,同位角相等,两直线平行;(2)证明见解析.【分析】(1)根据两直线平行内错角相等和同位角相等两直线平行求解即可;(2)根据两直线平行解析:(1)∠FDE,两直线平行,内错角相等;∠A,∠BFD,同位角相等,两直线平行;(2)证明见解析.【分析】(1)根据两直线平行内错角相等和同位角相等两直线平行求解即可;(2)根据两直线平行同位角相等和内错角相等两直线平行求解即可【详解】(1)证明:∵DE∥BA(已知)∴∠BFD=∠FDE(两直线平行,内错角相等)又∵∠A=∠FDE∴∠A=∠BFD,(等量代换)∴FD∥CA(同位角相等,两直线平行.)故答案为:∠FDE,两直线平行,内错角相等;∠A,∠BFD,同位角相等,两直线平行.(2)证明:∵DE∥BA(已知),∴∠A=∠DEC(两直线平行,同位角相等),又∵∠A=∠FDE(已知),∴∠FDE=∠DEC(等量代换),∴FD∥CA;(内错角相等,两直线平行).【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)见详解;(2)图形见详解,(-4,-2)、(4,2)、(0,3);(3)12.【分析】(1)根据坐标在坐标图中描点连线即可;(2)按照平移方式描点连线并写出坐标点;(3)根据坐标点利用解析:(1)见详解;(2)图形见详解,(-4,-2)、(4,2)、(0,3);(3)12.【分析】(1)根据坐标在坐标图中描点连线即可;(2)按照平移方式描点连线并写出坐标点;(3)根据坐标点利用割补法求面积即可.【详解】解:(1)如图:(2)平移后如图:平移后坐标分别为:(-4,-2)、(4,2)、(0,3);(3)的面积:.【点睛】此题考查坐标系中坐标的平移和坐标图形的面积,难度一般,掌握平移的性质是关键.21.(1);(2)2【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为c的值;(2)根据题意及c的值求出m和n的值,再把m,n代入所求代数式进行计算即可.【详解】解:(1)点.分别表示解析:(1);(2)2【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为c的值;(2)根据题意及c的值求出m和n的值,再把m,n代入所求代数式进行计算即可.【详解】解:(1)点.分别表示1,,,;(2),,,,,,,的整数部分是8,.【点睛】此题考查了估算无理数的大小,正确估算及是解题的关键.二十二、解答题22.(1);(2)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采解析:(1);(2)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.【详解】解:(1)由已知AB2=1,则AB=1,由勾股定理,AC=;故答案为:.(2)由圆面积公式,可得圆半径为,周长为,正方形周长为4.;即C圆<C正;故答案为:<(3)不能;由已知设长方形长和宽为3xcm和2xcm∴长方形面积为:2x•3x=12解得x=∴长方形长边为3>4∴他不能裁出.【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.二十三、解答题23.(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式,求出t的值,进而求出的度数;(3)根据灯B的解析:(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式,求出t的值,进而求出的度数;(3)根据灯B的要求,t<150,在这个时间段内A可以转3次,分情况讨论.【详解】解:(1).又,.,;(2)设灯转动时间为秒,如图,作,而,,,,,,(3)设灯转动秒,两灯的光束互相平行.依题意得①当时,两河岸平行,所以两光线平行,所以所以,即:,解得;②当时,两光束平行,所以两河岸平行,所以所以,,解得;③当时,图大概如①所示,解得(不合题意)综上所述,当秒或82.5秒时,两灯的光束互相平行.【点睛】这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键.24.(1)∠DAC;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;解析:(1)∠DAC;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.【详解】解:(1)过点A作ED∥BC,∴∠B=∠EAB,∠C=∠DCA,又∵∠EAB+∠BAC+∠DAC=180°,∴∠B+∠BAC+∠C=180°.故答案为:∠DAC;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°;(3)如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°.【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.25.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°解析:(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年终工作总结15篇
- 人文关怀:传递爱与温暖的力量主题班会
- 2025年高考语文文化常识题试题库300题(含答案)
- 2025年河南对外经济贸易职业学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 2025年杨凌职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 中班幼儿重阳活动策划方案五篇
- 电子商务交易合同
- 广告宣传片制作合同范本
- 固始土鸡蛋购销合同书
- 幼儿园种子科学活动策划方案五篇
- 福建省泉州市晋江市2024-2025学年七年级上学期期末生物学试题(含答案)
- 2025年春新人教版物理八年级下册课件 第十章 浮力 第4节 跨学科实践:制作微型密度计
- 财务BP经营分析报告
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
- 《社区康复》课件-第八章 视力障碍患者的社区康复实践
- 透析患者的血糖管理
- 《逆向建模与产品创新设计》课程标准
- 前置审方合理用药系统建设方案
- 国寿增员长廊讲解学习及演练课件
- 新疆维吾尔自治区乌鲁木齐市初中语文九年级期末模考试题详细答案和解析
- 同等学力申硕英语考试高频词汇速记汇总
评论
0/150
提交评论