版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初二数学上册压轴题综合试题附答案1、如图,和中,,,,边与边交于点(不与点,重合),点,在异侧,为与的角平分线的交点.(1)求证:;(2)设,请用含的式子表示,并求的最大值;(3)当时,的取值范围为,求出,的值.2、如图1,在平面直角坐标系中,AO=AB,∠BAO=90°,BO=8cm,动点D从原点O出发沿x轴正方向以acm/s的速度运动,动点E也同时从原点O出发在y轴上以bcm/s的速度运动,且a,b满足关系式a2+b2﹣4a﹣2b+5=0,连接OD,OE,设运动的时间为t秒.(1)求a,b的值;(2)当t为何值时,△BAD≌△OAE;(3)如图2,在第一象限存在点P,使∠AOP=30°,∠APO=15°,求∠ABP.3、如图,中,,.(1)如图1,,,求证:;(2)如图2,,,请直接用几何语言写出、的位置关系____________;(3)证明(2)中的结论.4、如图,在平面直角坐标系中,已知点,,且,为轴上点右侧的动点,以为腰作等腰,使,,直线交轴于点.(1)求证:;(2)求证:;(3)当点运动时,点在轴上的位置是否发生变化,为什么?5、如图,是等边三角形,点分别是射线、射线上的动点,点D从点A出发沿着射线移动,点E从点B出发沿着射线移动,点同时出发并且移动速度相同,连接.(1)如图①,当点D移动到线段的中点时,与的长度关系是:_______.(2)如图②,当点D在线段上移动但不是中点时,探究与之间的数量关系,并证明你的结论.(3)如图③,当点D移动到线段的延长线上,并且时,求的度数.6、如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上一点,且DE=CE,连接BD,CD.(1)判断与的位置关系和数量关系,并证明;(2)如图2,若将△DCE绕点E旋转一定的角度后,BD与AC的位置关系和数量关系是否发生变化?并证明;(3)如图3,将(2)中的等腰直角三角形都换成等边三角形,其他条件不变,求BD与AC夹角的度数.7、以点为顶点作等腰,等腰,其中,如图1所示放置,使得一直角边重合,连接、.(1)试判断、的数量关系,并说明理由;(2)延长交于点试求的度数;(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.8、如图,在平面直角坐标系中,点A(0,3),B(,0),AB=6,作∠DBO=∠ABO,点H为y轴上的点,∠CAH=∠BAO,BD交y轴于点E,直线DO交AC于点C.(1)证明:△ABE为等边三角形;(2)若CD⊥AB于点F,求线段CD的长;(3)动点P从A出发,沿A﹣O﹣B路线运动,速度为1个单位长度每秒,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A路线运动,速度为2个单位长度每秒,到A点处停止运动.两点同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间时△OPM与△OQN全等?【参考答案】1、(1)见解析(2),3(3)m=105,n=150【分析】(1)由条件易证,得,即可得证.(2)PD=AD-AP=6-x,点P在线段BC上且不与B、C重合时,AP有最小值,即AD⊥BC时A【解析】(1)见解析(2),3(3)m=105,n=150【分析】(1)由条件易证,得,即可得证.(2)PD=AD-AP=6-x,点P在线段BC上且不与B、C重合时,AP有最小值,即AD⊥BC时AP的长度,此时PD可得最大值.(3)为与的角平分线的交点,应用“三角形内角和等于180°”及角平分线定义,即可表示出,从而得到m,n的值.(1)解:在和中,如图1即(2)解:当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值(3)解:如图2,设则为与的角平分线的交点即【点睛】本题是一道几何综合题,考查了点到直线的距离垂线段最短,30°的角所对的直角边等于斜边的一半,全等三角形的判定和性质,角平分线定义等,解题关键是将PD最大值转化为PA的最小值.2、(1)a=2,b=1;(2)t=或t=8;(3)∠ABP=105°.【分析】(1)将a2+b2﹣4a﹣2b+5=0用配方法得出(a﹣2)2+(b﹣1)2=0,利用非负数的性质,即可得出结论;(2【解析】(1)a=2,b=1;(2)t=或t=8;(3)∠ABP=105°.【分析】(1)将a2+b2﹣4a﹣2b+5=0用配方法得出(a﹣2)2+(b﹣1)2=0,利用非负数的性质,即可得出结论;(2)先由运动得出BD=|8﹣2t|,再由全等三角形的性质的出货BD=OE,建立方程求解即可得出结论.(3)先判断出△OAP≌△BAQ(SAS),得出OP=BQ,∠ABQ=∠AOP=30°,∠AQB=∠APO=15°,再求出∠OAP=135°,进而判断出△OAQ≌△BAQ(SAS),得出∠OQA=∠BQA=15°,OQ=BQ,再判断出△OPQ是等边三角形,得出∠OQP=60°,进而求出∠BQP=30°,再求出∠PBQ=75°,即可得出结论.【详解】解:(1)∵a2+b2﹣4a﹣2b+5=0,∴(a﹣2)2+(b﹣1)2=0,∴a﹣2=0,b﹣1=0,∴a=2,b=1;(2)由(1)知,a=2,b=1,由运动知,OD=2t,OE=t,∵OB=8,∴DB=|8﹣2t|∵△BAD≌△OAE,∵DB=OE,∴|8﹣2t|=t,解得,t=(如图1)或t=8(如图2);(3)如图3,过点A作AQ⊥AP,使AQ=AP,连接OQ,BQ,PQ,则∠APQ=45°,∠PAQ=90°,∵∠OAB=90°,∴∠PAQ=∠OAB,∴∠OAB+∠BAP=∠PAQ+∠BAP,即:∠OAP=∠BAQ,∵OA=AB,AD=AD,∴△OAP≌△BAQ(SAS),∴OP=BQ,∠ABQ=∠AOP=30°,∠AQB=∠APO=15°,在△AOP中,∠AOP=30°,∠APO=15°,∴∠OAP=180°﹣∠AOP﹣∠APO=135°,∴∠OAQ=360°﹣∠OAP﹣∠PAQ=135°﹣90°=135°=∠OAP,∵OA=AB,AD=AD,∴△OAQ≌△BAQ(SAS),∴∠OQA=∠BQA=15°,OQ=BQ,∵OP=BQ,∴OQ=OP,∵∠APQ=45°,∠APO=15°,∴∠OPQ=∠APO+∠APQ=60°,∴△OPQ是等边三角形,∴∠OQP=60°,∴∠BQP=∠OQP﹣∠OQA﹣∠BQA=60°﹣15°﹣15°=30°,∵BQ=PQ,∴∠PBQ=(180°﹣∠BQP)=75°,∴∠ABP=∠ABQ+∠PBQ=30°+75°=105°.【点睛】本题是三角形综合题,主要考查了配方法、非负数的性质、三角形内角和定理、等边三角形的判定和性质、全等三角形的判定及性质,构造出全等三角形是解题的关键.3、(1)见解析;(2)⊥;(3)见解析【分析】(1)根据垂直的定义可得∠ADC=∠E=90°,根据余角的性质可得∠ACD=∠BAE,然后根据AAS即可证得结论;(2)由于要得出、的位置关系,结合图【解析】(1)见解析;(2)⊥;(3)见解析【分析】(1)根据垂直的定义可得∠ADC=∠E=90°,根据余角的性质可得∠ACD=∠BAE,然后根据AAS即可证得结论;(2)由于要得出、的位置关系,结合图形可猜想:⊥;(3)如图,作CP⊥AC于点C,延长FD交CP于点P,先证明△BAE≌△FCP,可得∠3=∠P,AB=CP,然后证明△ACD≌△PCD,可得∠4=∠P,进一步即可推出∠4+∠2=90°,问题得证.【详解】解:(1)证明:∵,,∴∠ADC=∠E=90°,∠DAC+∠ACD=90°,∵,∴∠DAC+∠BAE=90°,∴∠ACD=∠BAE,在△DAC和△EBA中,∵∠ADC=∠E,∠ACD=∠BAE,AC=AB,∴(AAS);(2)结合图形可得:⊥;故答案为:⊥;(3)证明:如图,作CP⊥AC于点C,延长FD交CP于点P,∵AF=CE,∴AE=CF,∵,∴∠1=∠2,∵∠BAE=∠FCP=90°,∴△BAE≌△FCP,∴∠3=∠P,AB=CP,∵,,∴∠ABC=∠ACB=45°,∵∠PCP=90°,AB=CP,∴∠FCD=45°,AC=PC,∴∠ACB=∠PCD,∵CD=CD,∴△ACD≌△PCD,∴∠4=∠P,∵∠3=∠P,∴∠3=∠4,∵∠3+∠2=90°,∴∠4+∠2=90°,∴∠AGE=90°,即⊥.【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定和性质,正确添加辅助线、熟练掌握全等三角形的判定和性质是解题的关键.4、(1)见解析;(2)见解析;(3)不变,理由见解析【分析】(1)先根据非负数的性质求出、的值,作于点,由定理得出,根据全等三角形的性质即可得出结论;(2)先根据,得出,再由定理即可得出;(3)【解析】(1)见解析;(2)见解析;(3)不变,理由见解析【分析】(1)先根据非负数的性质求出、的值,作于点,由定理得出,根据全等三角形的性质即可得出结论;(2)先根据,得出,再由定理即可得出;(3)设,由全等三角形的性质可得出,故为定值,再由,可知的长度不变,故可得出结论.【详解】解:(1)证明:,,解得,,,作于点,,,,,在与中,,,;(2)证明:,,即,在与中,,;(3)点在轴上的位置不发生改变.理由:设,由(2)知,,,,为定值,,长度不变,点在轴上的位置不发生改变.【点睛】本题考查的是全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键.5、(1)(2),证明见详解(3)【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可知为等边【解析】(1)(2),证明见详解(3)【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可知为等边三角形,再利用边角边即可证明,最后根据全等三角形的性质即可证明;(3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,如图(见详解),用同样的方法证明,再根据ED⊥DC,证出为等腰直角三角形,即可求出∠DEC的度数.(1)解:,证明过程如下:由题意可知,∵D为AB的中点,∴,∴,∴.∵为等边三角形,,∴.∵,∴,∴,∴.(2)解:,理由如下:在射线AB上截取,连接EF,如图所示,∵为等边三角形,∴,.∵,,∴为等边三角形,∴,.由题意知,∴,∴.即.∵,∴.在和中,,∴,∴DE与DC之间的数量关系是.(3)如图,在射线CB上截取,连接DF,如图所示,∵为等边三角形,∴,.∵,,∴为等边三角形,∴,,∴.由题意知,∵,∴,即.∵,∴.在和中,,∴,∴.∵ED⊥DC,∴为等腰直角三角形,∴.【点睛】本题主要考查了等腰三角形,等边三角形,以及全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键.6、(1),;(2),;(3).【分析】(1)先判断出,再判定,再判断,(2)先判断出,再得到同理(1)可得结论;(3)先判断出,再判断出,最后计算即可.【详解】解:(1)与的位置关系是:,【解析】(1),;(2),;(3).【分析】(1)先判断出,再判定,再判断,(2)先判断出,再得到同理(1)可得结论;(3)先判断出,再判断出,最后计算即可.【详解】解:(1)与的位置关系是:,数量关系是.理由如下:如图1,延长交于点.于,.,,,,,.,.AE⊥BC∴,,.(2)与的位置关系是:,数量关系是.如图,线段AC与线段BD交于点F,线段AE与线段BD交于点G,,,即.,,,,.AE⊥BC∴,又∵,.(3)如图,线段AC与线段BD交于点F,和是等边三角形,,,,,,,在和中,,∴,,与的夹角度数为.【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,等边三角形的性质,判断垂直的方法,解本题的关键是判断.7、(1)BD=CE,理由见解析;(2)90°;(3)成立,理由见解析.【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△A【解析】(1)BD=CE,理由见解析;(2)90°;(3)成立,理由见解析.【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE;(2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可得到∠BFC=180°-∠ACE-∠CDF=180°-∠DBA-∠BDA=∠DAB=90°;(3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠DAB=90°.【详解】(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°-∠ACE-∠CDF,又∵∠CDF=∠BDA,∴∠BFC=180°-∠DBA-∠BDA=∠DAB=90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD,∴∠BAD=∠CAE,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠DAB=90°.【点睛】本题考查全等三角形的判定与性质.判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,熟知判定方法并根据题目条件选择合适的方法进行解答.8、(1)详见解析;(2)CD=;(3)当两动点运动时间为、、6秒时,△OPM与△OQN全等.【分析】(1)先证△AOB≌△EOB得到AE=BE=AB,从而可以得出结论;(2)由(1)知∠ABE=∠【解析】(1)详见解析;(2)CD=;(3)当两动点运动时间为、、6秒时,△OPM与△OQN全等.【分析】(1)先证△AOB≌△EOB得到AE=BE=AB,从而可以得出结论;(2)由(1)知∠ABE=∠BEA=∠EAB=60°,进而得出∠AOF=30°,利用含30°角的直角三角形的性质得到AF、OF的长.再证明∠ACF=∠AOF=30°,∠D=30°,同理得出CF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度商业综合体店铺装修一体化服务合同
- 2025年度草莓种植与深加工一体化项目合同3篇
- 课题申报参考:南岭走廊瑶族传统建筑壁画图像叙事及活化研究
- 课题申报参考:面向患者情绪体验的大型医疗设备系统设计策略研究
- 课题申报参考:贸易面向型人工智能规则的发展及其特征研究
- 《短视频编剧:选题构想+脚本制作+剧本策划+镜头拍摄》课件全套 第1-11章 选题方向:从账号定位出发 - 综合案例:短剧《错过》
- 二零二五年度车辆抵押借款合同(含提前还款)4篇
- 二零二五版金融科技项目内部股东转让合同4篇
- 二零二五年度工业级模具开模设计与制造合同3篇
- 2025年度新型个人汽车抵押借款合同范本
- 2025年度车辆抵押借款合同模板(专业二手车交易平台)
- 非ST段抬高型急性冠脉综合征诊断和治疗指南(2024)解读
- 煤矿反三违培训课件
- 向流程设计要效率
- 安全文明施工的管理要点
- 2024年中国航空发动机集团招聘笔试参考题库含答案解析
- 当代中外公司治理典型案例剖析(中科院研究生课件)
- 动力管道设计手册-第2版
- 2022年重庆市中考物理试卷A卷(附答案)
- Python绘图库Turtle详解(含丰富示例)
- 煤矿机电设备检修技术规范完整版
评论
0/150
提交评论