版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东枣庄八中北校区2024届数学高二上期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.世界上最早在理论上计算出“十二平均律”的是我国明代杰出的律学家朱载堉,他当时称这种律制为“新法密率”十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都相等,且最后一个单音是第一个单音频率的2倍.已知第十个单音的频率,则与第四个单音的频率最接近的是()A.880 B.622C.311 D.2202.在四面体OABC中,,,,则与AC所成角的大小为()A.30° B.60°C.120° D.150°3.抛物线的焦点到直线的距离为,则()A.1 B.2C. D.44.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第7项为()A.101 B.99C.95 D.915.函数的大致图象是()A. B.C. D.6.【山东省潍坊市二模】已知双曲线的离心率为,其左焦点为,则双曲线的方程为()A. B.C. D.7.设a,b,c分别是内角A,B,C的对边,若,,依次成公差不为0的等差数列,则()A.a,b,c依次成等差数列 B.,,依次成等差数列C.,,依次成等比数列 D.,,依次成等比数列8.加斯帕尔·蒙日(图1)是18~19世纪法国著名的几何学家,他在研究圆锥曲线时发现:椭圆的任意两条互相垂直的切线的交点都在同一个圆上,其圆心是椭圆的中心,这个圆被称为“蒙日圆”(图2).则椭圆的蒙日圆的半径为()A.3 B.4C.5 D.69.对于实数a,b,c,下列命题中的真命题是()A.若,则 B.,则C.若,,则, D.若,则10.已知椭圆的短轴长为8,且一个焦点是圆的圆心,则该椭圆的左顶点为()A B.C. D.11.在等差数列中,,,则公差A.1 B.2C.3 D.412.已知抛物线C:,则过抛物线C的焦点,弦长为整数且不超过2022的直线的条数是()A.4037 B.4044C.2019 D.2022二、填空题:本题共4小题,每小题5分,共20分。13.由曲线围成的图形的面积为_______________14.已知点,,其中,若线段的中点坐标为,则直线的方程为________15.某教师组织本班学生开展课外实地测量活动,如图是要测山高.现选择点A和另一座山顶点C作为测量观测点,从A测得点M的仰角,点C的仰角,测得,,已知另一座山高米,则山高_______米.16.若函数在x=1处的切线与直线y=kx平行,则实数k=___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.18.(12分)如图所示,四棱锥的底面为直角梯形,,,,,底面,为的中点(1)求证:平面平面;(2)求点到平面的距离19.(12分)若函数与的图象有一条与直线平行的公共切线,求实数a的值20.(12分)设函数(1)求的值;(2)求的极大值21.(12分)已知点,圆C:,l:.(1)若直线过点M,且被圆C截得的弦长为,求该直线的方程;(2)设P为已知直线l上的动点,过点P向圆C作一条切线,切点为Q,求的最小值.22.(10分)已知函数.(1)若在处取得极值,求在处的切线方程;(2)讨论的单调性;(3)若函数在上无零点,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】依题意,每一个单音的频率构成一个等比数列,由,算出公比,结合,即可求出.【详解】设第一个单音的频率为,则最后一个单音的频率为,由题意知,且每一个单音的频率构成一个等比数列,设公比为,则,解得:又,则与第四个单音的频率最接近的是311,故选:C【点睛】关键点点睛:本题考查等比数列通项公式的运算,解题的关键是分析题意将其转化为等比数列的知识,考查学生的计算能力,属于基础题.2、B【解析】以为空间的一个基底,求出空间向量求的夹角即可判断作答.【详解】在四面体OABC中,不共面,则,令,依题意,,设与AC所成角的大小为,则,而,解得,所以与AC所成角的大小为.故选:B3、B【解析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得的值.【详解】抛物线的焦点坐标为,其到直线的距离:,解得:(舍去).故选:B.4、C【解析】根据所给数列找到规律:两次后项减前项所得数列为公差为2的数列,进而反向确定原数列的第7项.【详解】根据所给定义,用数列的后一项减去前一项得到一个数列,得到的数列也用后一项减去前一项得到一个数列,即得到了一个等差数列,如图:故选:C.5、A【解析】由得出函数是奇函数,再求得,,运用排除法可得选项.【详解】法一:由函数,则,所以函数为奇函数,图象关于原点对称,所以排除B;因为,所以排除D;因为,所以排除C,故选:A.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.6、D【解析】分析:根据题设条件,列出方程,求出,,的值,即可求得双曲线得标准方程详解:∵双曲线的离心率为,其左焦点为∴,∴∵∴∴双曲线的标准方程为故选D.点睛:本题考查双曲线的标准方程,双曲线的简单性质的应用,根据题设条件求出,,的值是解决本题的关键.7、B【解析】由等差数列的性质得,利用正弦定理、余弦定理推导出,从而,,依次成等差数列.【详解】解:∵a,b,c分别是内角A,B,C的对边,,,依次成公差不为0的等差数列,∴,根据正弦定理可得,∴,∴,∴,∴,,依次成等差数列.故选:B.【点睛】本题考查三个数成等差数列或等比数列的判断,考查等差数列、等比数列的性质、正弦定理、余弦定理等基础知识,考查运算求解能力,考查函数与方程思想,属于中档题.8、A【解析】由蒙日圆的定义,确定出圆上的一点即可求出圆的半径.【详解】由蒙日圆的定义,可知椭圆的两条切线的交点在圆上,所以,故选:A9、C【解析】对于选项A,可以举反例判断;对于选项BCD可以利用作差法判断得解.【详解】解:A.若,则不一定成立.如:.所以该选项错误;B.,所以,所以该选项错误;C.,所以该选项正确;D.,所以该选项错误.故选:C10、D【解析】根据椭圆的一个焦点是圆的圆心,求得c,再根据椭圆的短轴长为8求得b即可.【详解】圆的圆心是,所以椭圆的一个焦点是,即c=3,又椭圆的短轴长为8,即b=4,所以椭圆长半轴长为,所以椭圆的左顶点为,故选:D11、B【解析】由,将转化为表示,结合,即可求解.【详解】,.故选:B.【点睛】本题考查等差数列基本量的计算,属于基础题.12、A【解析】根据已知条件,结合抛物线的性质,先求出过焦点的最短弦长,再结合抛物线的对称性,即可求解【详解】∵抛物线C:,即,由抛物线的性质可得,过抛物线焦点中,长度最短的为垂直于y轴的那条弦,则过抛物线C的焦点,长度最短的弦的长为,由抛物线的对称性可得,弦长在5到2022之间的有共有条,故弦长为整数且不超过2022的直线的条数是故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】当时,曲线表示的图形为以为圆心,以为半径的圆在第一象限的部分,所以面积为,根据对称性,可知由曲线围成的图形的面积为考点:本小题主要考查曲线表示的平面图形的面积的求法,考查学生分类讨论思想的运用和运算求解能力.点评:解决此题的关键是看出所求图形在四个象限内是相同的,然后求出在一个象限内的图形的面积即可解决问题.14、【解析】根据中点坐标公式求出,再根据直线的两点式方程即可得出答案.【详解】解:由,,得线段的中点坐标为,所以,解得,所以直线的方程为,即.故答案为:.15、【解析】利用正弦定理可求出各个三角形的边长,进而求出山高.【详解】解:在中,,,,可得在中,,所以由正弦定理可得:即,得在直角中,所以故答案为:.16、2【解析】由题可求函数的导数,再利用导数的几何意义即求.【详解】∵,∴,,又函数在x=1处的切线与直线y=kx平行,∴.故答案为:2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2),【解析】(1)由,计算出公差,再写出通项公式即可.(2)直接用公式写出,配方后求出最小值.【小问1详解】设公差为,由得,从而,即又,【小问2详解】由(1)的结论,,,当时,取得最小值.18、(1)证明见解析(2)【解析】(1)设与交点为,延长交的延长线于点,进而根据证明,再结合底面得,进而证明平面即可证明结论;(2)由得点到平面的距离等于点到平面的距离的,进而过作,垂足为,结合(1)得点到平面的距离等于,再在中根据等面积法求解即可.【小问1详解】证明:设与交点为,延长交的延长线于点,因为四棱锥的底面为直角梯形,,所以,所以,因为为的中点,所以,因为所以,所以,所以,所以,又因为,所以,又因为,所以,所以,所以又因为底面,所以,因为,所以平面,因为平面,所以平面平面【小问2详解】解:由于,所以,点到平面的距离等于点到平面的距离的,因为平面平面,平面平面故过作,垂足为,所以,平面,所以点到平面的距离等于在中,,所以,点到平面的距离等于.19、或3【解析】设出切点,先求和平行且和函数相切的切线,再将切线和联立,求出的值.【详解】设公共切线曲线上的切点坐标为,根据题意,得公共切线的斜率,所以,所以与函数的图像相切的切点坐标为,故可求出公共切线方程为由直线和函数的图像也相切,得方程,即关于x的方程有两个相等的实数根,所以,解得或320、(1)-3(2)2【解析】(1)利用导数公式和法则求解;(2)令,利用极大值的定义求解.【小问1详解】解:因为函数,所以,所以;【小问2详解】令,得,当或时,,当时,,所以当时,取得极大值.21、(1)或(2)【解析】(1)求出圆的圆心到直线的距离,再利用垂径定理计算列方程计算;(2)由题意可知当最小时,连线与已知直线垂直,求出,再利用计算即可.【小问1详解】由题意可知圆的圆心到直线的距离为①当直线斜率不存在时,圆的圆心到直线距离为1,满足题意;②当直线斜率存在时,设过的直线方程为:,即由点到直线距离公式列方程得:解得综上,过的直线方程为或.【小问2详解】由题意可知当最小时,连线与已知直线垂直,由勾股定理知:,所以的最小值为.22、(1);(2)见解析;(3).【解析】(1)根据在处取极值可得,可求得,验证可知满足题意;根据导数的几何意义求得切线斜率,利用点斜式可求得切线方程;(2)求导后,分别在和两种情况下讨论导函数的符号,从而得到的单调性;(3)根据在上无零点可知在上的最大值和最小值符号一致;分别在,两种情况下根据函数的单调性求解最大值和最小值,利用符号一致构造不等式求得结果.【详解】(1)由题意得:在处取极值,解得:则当时,,单调递减;当时,,单调递增为极小值点,满足题意函数当时,由得:在处的切线方程为:,即:(2)由题意知:函数的定义域为,①当时若,恒成立,恒成立在内单调递减②当时由,得:;由得:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第二章 生物多样性及其分类课件
- 2024年实验幼儿园招聘非在编教职工考试题(含答案)
- 2024届息烽县第一中学高考备考冲刺阶段(查缺补漏)数学试题
- 2024年呼和浩特客运驾驶从业资格考试题库
- 2024年大同办理客运从业资格证模拟考试
- 2024年阿里大客车从业资格证考试试题
- 2024年大理客运资格证试题完整版
- 2024年青海客运资格证考试app下载
- 2024年长春考客运从业资格证需要什么条件
- 2024年山东客运资格证必考题答案
- 剑桥国际少儿英语4文本(Word)
- 神奇的大脑PPT课件
- 平面构成与式设计PPT课件
- 《自律主题班会》
- 重回汉唐策划
- 中央广播电视大学 北京工业大学
- 管理类档案基本归档范围及保管期限表
- 常用肝功能指标解读
- 汽车维修公司章程模板
- 环保、安全、消防、职业卫生专项验收的内容
- 起重吊装作业PPT课件
评论
0/150
提交评论