版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市上海理工大附中2023-2024学年高二数学第一学期期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《九章算术》中,将四个面都为直角三角形的三棱锥称为鳖臑(nào).如图所示的三棱锥为一鳖臑,且平面,平面,若,,,则()A. B.C. D.2.双曲线的左右焦点分别是,,直线与双曲线在第一象限的交点为,在轴上的投影恰好是,则双曲线的离心率是()A. B.C. D.3.已知点P在抛物线上,点Q在圆上,则的最小值为()A. B.C. D.4.过两点、的直线的倾斜角为,则的值为()A.或 B.C. D.5.在四面体中,设,若F为BC的中点,P为EF的中点,则=()A. B.C. D.6.设是定义在R上的函数,其导函数为,满足,若,则()A. B.C. D.a,b的大小无法判断7.已知,则()A. B.1C. D.8.已知为原点,点,以为直径的圆的方程为()A. B.C. D.9.中国历法推测遵循以测为辅,以算为主的原则.例如《周髀算经》里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.二十四节气中,从冬至到夏至的十三个节气依次为:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种、夏至.已知《周髀算经》中记录某年的冬至的晷影长为13尺,夏至的晷影长是1.48尺,按照上述规律,那么《周髀算经》中所记录的立夏的晷影长应为()A.尺 B.尺C.尺 D.尺10.已知等比数列的前项和为,首项为,公比为,则()A. B.C. D.11.上海世博会期间,某日13时至21时累计入园人数的折线图如图所示,那么在13时~14时,14时~15时,…,20时~21时八个时段中,入园人数最多的时段是()A.13时~14时 B.16时~17时C.18时~19时 D.19时~20时12.直线与直线,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.以下数据为某校参加数学竞赛的名同学的成绩:,,,,,,,,,,,,,,,,,,,.则这人成绩的第百分位数可以是______14.千年一遇对称日,万事圆满在今朝,年月日又是一个难得的“世界完全对称日”(公历纪年日期中数字左右完全对称的日期).数学上把这样的对称自然数叫回文数,两位数的回文数共有个(),其中末位是奇数的又叫做回文奇数,则在内的回文奇数的个数为___15.抛物线C:的焦点F,其准线过(-3,3),过焦点F倾斜角为的直线交抛物线于A,B两点,则p=___________;弦AB的长为___________.16.不等式是的解集为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱中,平面ABC,,,,点D,E分别在棱和棱上,且,,M为棱的中点(1)求证:;(2)求直线AB与平面所成角的正弦值18.(12分)在一次重大军事联合演习中,以点为中心的海里以内海域被设为警戒区域,任何船只不得经过该区域.已知点正北方向海里处有一个雷达观测站,某时刻测得一艘匀速直线行驶的船只位于点北偏东,且与点相距海里的位置,经过小时又测得该船已行驶到位于点北偏东,且与点相距海里的位置(1)求该船的行驶速度(单位:海里/小时);(2)该船能否不改变方向继续直线航行?请说明理由19.(12分)已知点、分别是椭圆C:)的左、右焦点,点P在椭圆C上,当∠PF1F2=时,面积达到最大,且最大值为.(1)求椭圆C的标准方程;(2)设直线l:与椭圆C交于A、B两点,求面积的最大值.20.(12分)已知函数(1)若在上单调递减,求实数a的取值范围(2)若是方程的两个不相等的实数根,证明:21.(12分)已知点,点B为直线上的动点,过B作直线的垂线,线段AB的中垂线与交于点P(1)求点P的轨迹C的方程;(2)若过点的直线l与曲线C交于M,N两点,求面积的最小值.(O为坐标原点)22.(10分)在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(1)求证:平面平面;(2)若,求直线与所成角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据平面,平面求解.【详解】因为平面,平面,所以,又,,,所以,所以,故选:A2、D【解析】根据题意的到,,代入到双曲线方程,解得,即,则,即,即,求解方程即可得到结果.【详解】设原点为,∵直线与双曲线在第一象限的交点在轴上的投影恰好是,∴,且,∴,将代入到双曲线方程,可得,解得,即,则,即,即,解得(舍负),故.故选:D.3、C【解析】先计算抛物线上的点P到圆心距离的最小值,再减去半径即可.【详解】设,由圆心,得,∴时,,∴故选:C.4、D【解析】利用斜率公式可得出关于实数的等式与不等式,由此可解得实数的值.详解】由斜率公式可得,即,解得.故选:D.5、A【解析】作出图示,根据空间向量的加法运算法则,即可得答案.【详解】如图示:连接OF,因为P为EF中点,,F为BC的中点,则,故选:A6、A【解析】首先构造函数,再利用导数判断函数的单调性,即可判断选项.【详解】设,,所以函数在单调递增,即,所以,那么,即.故选:A7、B【解析】先根据共轭复数的定义可得,再根据复数的运算法则即可求出【详解】因为,所以故选:B8、A【解析】求圆的圆心和半径,根据圆的标准方程即可求解﹒【详解】由题知圆心为,半径,∴圆方程为﹒故选:A﹒9、B【解析】根据等差数列定义求得公差,再求解立夏的晷影长在数列中所对应的项即可【详解】设从冬至到夏至的十三个节气依次为等差数列的前13项,则所以公差为,则立夏的晷影长应为(尺)故选:B10、D【解析】根据求解即可.【详解】因为等比数列,,所以.故选:D11、B【解析】要找入园人数最多的,只要根据函数图象找出图象中变化最大的即可【详解】结合函数的图象可知,在13时~14时,14时~15时,…,20时~21时八个时段中,图象变化最快的为16到17点之间故选:B.【点睛】本题考查折线统计图的实际应用,属于基础题.12、A【解析】根据直线与直线的垂直,列方程,求出,再判断充分性和必要性即可.【详解】解:若,则,解得或,即或,所以”是“充分不必要条件.故选:A.【点睛】本题考查直线一般式中直线与直线垂直的系数关系,考查充分性和必要性的判断,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用百分位数的求法直接求解即可.【详解】解:将所给数据按照从小到大的顺序排列:,,,,,,,,,,,,,,,,,,,.数据量,∵是整数,∴故答案为:.14、【解析】根据分类加法计数原理,结合题中定义、组合的定义进行求解即可.【详解】两位数的回文奇数有,共个,三位数的回文奇数有,四位数的回文奇数有,所以在内的回文奇数的个数为,故答案为:15、①.6;②.48.【解析】先通过准线求出p,写出抛物线方程和直线方程,联立得出,进而求出弦AB的长.【详解】由知准线方程为,又准线过(-3,3),可得,;焦点坐标为,故直线方程为,和抛物线方程联立,,得,故,又.故答案为:6;48.16、【解析】由可得,结合分式不等式的解法即可求解.【详解】由可得,整理可得:,则,解可得:.所以不等式是的解集为:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】(1)由线面垂直、等腰三角形的性质易得、,再根据线面垂直的判定及性质证明结论;(2)构建空间直角坐标系,确定相关点坐标,进而求的方向向量、面的法向量,应用空间向量夹角的坐标表示求直线与平面所成角的正弦值.【小问1详解】在三棱柱中,平面,则平面,由平面,则,,则,又为的中点,则,又,则平面,由平面,因此,.【小问2详解】以为原点,以,,为轴、轴、轴的正方向建立空间直角坐标系,如图所示,可得:,,,,,,.∴,,,,设为面的法向量,则,令得,设与平面所成角为,则,∴直线与平面所成角的正弦值为.18、(1)海里/小时;(2)该船要改变航行方向,理由见解析.【解析】(1)设一个单位为海里,建立以为坐标原点,正东、正北方向分别为、轴的正方向建立平面直角坐标系,计算出,即可求得该船的行驶速度;(2)求出直线的方程,计算出点到直线的距离,可得出结论.【小问1详解】解:设一个单位为海里,建立以为坐标原点,正东、正北方向分别为、轴的正方向建立如下图所示的平面直角坐标系,则坐标平面中,,且,,则、、,,所以,所以、两地的距离为海里,所以该船行驶的速度为海里/小时.【小问2详解】解:直线的斜率为,所以直线的方程为,即,所以点到直线的距离为,所以直线会与以为圆心,以个单位长为半径的圆相交,因此该船要改变航行方向,否则会进入警戒区域19、(1)(2)3【解析】(1)根据焦点三角形的性质可求出,从而可得标准方程,(2)联立直线方程和椭圆方程,消元后利用公式表示三角形面积,从而可求面积的最大值.小问1详解】△PF1F2面积达到最大时为椭圆的上顶点或下顶点,而此时∠PF1F2=,故面积最大时为等边三角形,故,因面积的最大值为,故,故,故椭圆的标准方程为:.【小问2详解】设,则由可得,此时恒成立.而,到的距离为,故的面积,令,设,则,故在上为增函数,故即的最大值为3.20、(1);(2)详见解析【解析】(1)首先求函数的导数,结合函数的导数与函数单调性的关系,参变分离后,转化为求函数的最值,即可求得实数的取值范围;(2)将方程的实数根代入方程,再变形得到,利用分析法,转化为证明,通过换元,构造函数,转化为利用导数证明,恒成立.【小问1详解】,,在上单调递减,在上恒成立,即,即在,设,,,当时,,函数单调递增,当时,,函数单调递减,所以函数的最大值是,所以;【小问2详解】若是方程两个不相等的实数根,即又2个不同实数根,且,,得,即,所以,不妨设,则,要证明,只需证明,即证明,即证明,令,,令函数,所以,所以函数在上单调递减,当时,,所以,,所以,即,即得【点睛】本题考查利用导数的单调性求参数的取值范围,以及证明不等式,属于难题,导数中的双变量问题,往往采用分析法,转化为函数与不等式的关系,通过构造函数,结合函数的导数,即可证明.21、(1)(2)【解析】(1)由已知可得,根据抛物线的定义可知点的轨迹是以为焦点,为准线的抛物线,即可得到轨迹方程;(2)设直线方程为,,,,,联立直线与抛物线方程,消元、列出韦达定理,则,代入韦达定理,即可求出面积最小值;【小问1详解】解:由已知可得,,即点到定点的距离等于到直线的距离,故点的轨迹是以为焦点,为准线的抛物线,所以点的轨迹方程为【小问2详解】解:当直线的倾斜角为时,与曲线只有一个交点,不符合题意;当直线的倾斜角不为时,设直线方程为,,,,,由,可得,,所以,,,,所以当且仅当时取等号,即面积的最小值为;22、(1)证明见解析;(2);【解析】(1)证明,利用面面垂直的性质可得出平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024养殖场知识产权保护与使用权合同
- 2024年建筑材料价格波动调整合同
- 2024年湖州道路客运输从业资格证仿真考试题库
- 2024年温州道路客运输从业资格证考试
- 2024年海口客运考试应用能力试题
- 2024年鄂尔多斯道路客运输从业资格证理论考试题
- 2024年甘孜货运资格证模拟考试题
- 2023届新高考化学选考一轮总复习训练-阶段过关检测(三) 物质结构与性质
- 2024年淮北道路客运输从业资格证理论考试答案
- 2024年库房租赁与药品仓储合同
- 仓储物流中心物业安全管理
- 医疗器械注册专员培训
- 期末复习重要考点03 《一元一次方程》十大考点题型(热点题型+限时测评)(原卷版)
- 生物丨金太阳(25-69C)广东省2025届高三10月大联考生物试卷及答案
- 车队车辆挂靠合同模板
- 期中 (试题) -2024-2025学年人教PEP版英语四年级上册
- 托育服务中心项目可行性研究报告
- 国开2024年秋《机电控制工程基础》形考任务3答案
- 中国高血压防治指南(2024年修订版)解读(总)
- (高清版)JTGT 5440-2018 公路隧道加固技术规范
- GB/T 3953-2024电工圆铜线
评论
0/150
提交评论