版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市宝山区高境一中2024届高二上数学期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在四面体中,,,,分别为,,,的中点,则化简的结果为()A. B.C. D.2.已知圆锥的表面积为,且它的侧面展开图是一个半圆,则这个圆锥的体积为()A. B.C. D.3.已知向量,则()A.5 B.6C.7 D.84.下列结论正确的个数为()①若,则;②若,则;③若,则;④若,则A.4 B.3C.2 D.15.已知,是双曲线的左右焦点,过的直线与曲线的右支交于两点,则的周长的最小值为()A. B.C. D.6.为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:㎝).根据所得数据画出的样本频率分布直方图如图,那么在这片树木中,底部周长小于110㎝的株树大约是()A.3000 B.6000C.7000 D.80007.命题“对任何实数,都有”的否定形式是()A.,使得B.,使得C.,使得D.,使得8.如图,在正方体中,,,,若为的中点,在上,且,则等于()A. B.C. D.9.已知关于的不等式的解集为,则不等式的解集为()A.或 B.C.或 D.10.“”是“方程表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.如图是函数的导函数的图象,下列说法正确的是()A.函数在上是增函数B.函数在上是减函数C.是函数的极小值点D.是函数的极大值点12.若抛物线的焦点与椭圆的右焦点重合,则的值为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.直线被圆所截得的弦中,最短弦所在直线的一般方程是__________14.某学生到某工厂进行劳动实践,利用打印技术制作模型.如图,该模型为一个大圆柱中挖去一个小圆柱后的剩余部分(两个圆柱底面圆的圆心重合),大圆柱的轴截面是边长为的正方形,小圆柱的侧面积是大圆柱侧面积的一半,打印所用原料的密度为,不考虑打印损耗,制作该模型所需原料的质量为________g.(取)15.如图所示,高尔顿钉板是一个关于概率的模型,每一黑点表示钉在板上的一颗钉子,它们彼此的距离均相等,上一层的每一颗的水平位置恰好位于下一层的两颗正中间.小球每次下落时,将随机的向两边等概率的落下.当有大量的小球都落下时,最终在钉板下面不同位置收集到小球.现有5个小球从正上方落下,则恰有3个小球落到2号位置的概率是______16.已知球的半径为4,圆与圆为该球的两个小圆,为圆与圆的公共弦,,若,则两圆圆心的距离___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,,其中.(1)试讨论函数的单调性;(2)若,证明:.18.(12分)已知点,.(1)求以为直径的圆的方程;(2)若直线被圆截得的弦长为,求值19.(12分)已知的三个顶点是,,(1)求边所在的直线方程;(2)求经过边的中点,且与边平行的直线的方程20.(12分)已知椭圆的离心率为,点在椭圆上,直线与交于,两点(1)求椭圆的方程及焦点坐标;(2)若线段的垂直平分线经过点,求的取值范围21.(12分)已知等比数列的首项,公比,在中每相邻两项之间都插入3个正数,使它们和原数列的数一起构成一个新的等比数列.(1)求数列的通项公式;(2)记数列前n项的乘积为,试问:是否有最大值?如果是,请求出此时n以及最大值;若不是,请说明理由.22.(10分)如图,在三棱柱中,侧棱垂直于底面,分别是的中点(1)求证:平面平面;(2)求证:平面;(3)求三棱锥体积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据向量的加法和数乘的几何意义,即可得到答案;【详解】故选:C2、D【解析】设圆锥的半径为,母线长,根据已知条件求出、的值,可求得该圆锥的高,利用锥体的体积公式可求得结果.【详解】设圆锥的半径为,母线长,因为侧面展开图是一个半圆,则,即,又圆锥的表面积为,则,解得,,则圆锥的高,所以圆锥的体积,故选:D.3、A【解析】利用空间向量的模公式求解.【详解】因向量,所以,故选:A4、D【解析】根据常数函数的导数为0,可判断①;根据幂函数的求导公式,可判断②;根据指数函数以及对数函数的求导公式,可判断③④.【详解】由得:,故①错误;对于,,故,故②正确;对于,则,故③错误;对于,则,故④错误,故选:D5、C【解析】根据双曲线的定义和性质,当弦垂直于轴时,即可求出三角形的周长的最小值.【详解】由双曲线可知:的周长为.当轴时,周长最小值为故选:C6、C【解析】先由频率分布直方图得到抽取的样本中底部周长小于110㎝的概率,进而可求出结果.【详解】由频率分布直方图可得,样本中底部周长小于110㎝的概率为,因此在这片树木中,底部周长小于110㎝的株树大约是.故选:C.【点睛】本题主要考查频率分布直方图的应用,属于基础题型.7、B【解析】可将原命题变成全称命题形式,而全称命题的否定为特称命题,即可选出答案.【详解】命题“对任何实数,都有”,可写成:,使得,此命题为全称命题,故其否定形式为:,使得.故选:B.8、B【解析】利用空间向量的加减法、数乘运算推导即可.【详解】.故选:B.9、A【解析】由一元二次不等式的解集可得且,确定a、b、c间的数量关系,再求的解集.【详解】由题意知:且,得,从而可化为,等价于,解得或.故选:A.10、B【解析】方程表示椭圆,可得,解出的范围即可判断出结论.【详解】∵方程表示椭圆,∴解得或,故“”是“方程表示椭圆”的必要不充分条件.故选:B11、A【解析】根据图象,结合导函数的正负性、极值的定义逐一判断即可.【详解】由图象可知,当时,;当时,,在上单调递增,在上单调递减,可知B错误,A正确;是极大值点,没有极小值,和不是函数的极值点,可知C,D错误故选:A12、D【解析】解:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出直线所过的定点,当该定点为弦的中点时弦长最短,利用点斜式求出直线方程,整理成一般式即可.【详解】即,令,解得即直线过定点圆的圆心为,半径为,最短弦所在直线的方程为整理得最短弦所在直线的一般方程是故答案为:.14、4500【解析】根据题意可知大圆柱的底面圆的半径,两圆柱的高,设小圆柱的底面圆的半径为,再根据小圆柱的侧面积是大圆柱侧面积的一半,求出小圆柱的底面圆的半径,然后求出该模型的体积,从而可得出答案.【详解】解:根据题意可知大圆柱的底面圆的半径,两圆柱的高,设小圆柱的底面圆的半径为,则有,即,解得,所以该模型的体积为,所以制作该模型所需原料的质量为.故答案:4500.15、【解析】先研究一个小球从正上方落下的情况,从而可求出一个小球从正上方落下落到2号位置的概率,进而可求出5个小球从正上方落下,则恰有3个小球落到2号位置的概率【详解】如图所示,先研究一个小球从正上方落下的情况,11,12,13,14指小球第2层到第3层的线路图,以此类推,小球所有的路线情况如下:01-11-21-31,01-11-21-32,01-11-22-33,01-11-22-34,01-12-23-33,01-12-23-34,01-12-24-35,01-12-24-36,02-14-26-38,02-14-26-37,02-14-25-35,02-14-25-36,02-13-24-36,02-13-24-35,02-13-23-34,02-13-23-33,共16种情况,其中落入2号位置的有4种,所以每个球落入2号位置的概率为,所以5个小球从正上方落下,则恰有3个小球落到2号位置的概率为,故答案为:16、【解析】欲求两圆圆心的距离,将它放在与球心组成的三角形中,只要求出球心角即可,通过球的性质构成的直角三角形即可解得【详解】∵,球半径为4,∴小圆的半径为,∵小圆中弦长,作垂直于,∴,同理可得,在直角三角形中,∵,,∴,∴,∴故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)证明见解析【解析】(1)先求出函数的定义域,然后求导,再根据导数的正负求出函数的单调区间,(2)要证,只要证,由于时,,当时,令,再利用导数求出其最小值大于零即可【小问1详解】的定义域为当时,,在上单调递增;当时,令,解得;令,解得;综上所述:当时,在上单调递增,无减区间;当时,在上单调递减,在上单调递增;【小问2详解】,,即证:,即证:当时,,,当时,令,则在上单调递增在上单调递增综上所述:,即18、(1).(2)或【解析】(1)根据题意,有A、B的坐标可得线段AB的中点即C的坐标,求出AB的长即可得圆C的半径,由圆的标准方程即可得答案;(2)根据题意,由直线与圆的位置关系可得点C到直线x﹣my+1=0的距离d,结合点到直线的距离公式可得,解可得m的值,即可得答案【详解】(1)根据题意,点,,则线段的中点为,即的坐标为;圆是以线段为直径的圆,则其半径,圆的方程为.(2)根据题意,若直线被圆截得的弦长为,则点到直线的距离,又由,则有,变形可得:,解可得或【点睛】本题考查直线与圆的位置关系以及弦长的计算,涉及圆的标准方程,属于基础题19、(1)(2)【解析】(1)利用直线方程的两点式求解;(2)先求得AB的中点,再根据直线与AC平行,利用点斜式求解.【小问1详解】因为,,所以边所在的直线方程为,即;【小问2详解】因为,,所以AB的中点为:,又,所以直线方程为:,即.20、(1),(2)【解析】(1)由题意,列出关于a,b,c的方程组求解即可得答案;(2)设M(x1,y1),N(x2,y2),线段MN的中点(x0,y0),则,作差可得①,又线段MN的垂直平分线过点A(0,1),则②,联立直线MN与椭圆的方程,可得﹣t2+1+4k2>0(*),③,由①②③及(*)式联立即可求解【小问1详解】解:由题意可得,解得,所以椭圆C的方程为,焦点坐标为【小问2详解】解:设M(x1,y1),N(x2,y2),线段MN的中点(x0,y0),因为,所以,即,所以①,因为线段MN的垂直平分线过点A(0,1),所以,即②,联立,得(1+4k2)x2+8ktx+4t2﹣4=0,所以=(8kt)2﹣4(1+4k2)(4t2﹣4)=﹣16t2+16+64k2>0,即﹣t2+1+4k2>0(*),③,把③代入②,得④,把③④代入①得,所以,即,代入(*)得,解得,又k≠0,所以k的取值范围为21、(1)(2)当或时,有最大值.【解析】(1)利用等比数列通项公式求解即可;(2)求出数列的前n项的乘积为,利用二次函数的性质求最值即可.【小问1详解】由已知得,数列首项,,设数列的公比为,即∴即,【小问2详解】,即当或5时,有最大值.22、(1)证明见解析;(2)证明见解析;(3)【解析】(1)由直线与平面垂直证明直线与平行的垂直;(2)证明直线与平面平行;(3)求三棱锥的体积就用体积公式.(1)在三棱柱中,底面ABC,所以AB,又因为AB⊥BC,所以AB⊥平面,因为AB平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学数学二年级下册口算练习100题-二年级数学口算练题
- 急诊医疗服务规范制度
- 13.1.2线段的垂直平分线性质(第二课时)
- 2024年西安客运驾驶员考试选择题及答案解析
- 算法设计与分析 课件 1.2.1-算法分析准则 - 正确性
- 2024年杭州客运考试应用能力试题及答案详解
- 2024年广西客车驾驶员从业资格证考试题库
- 2024年山西c1客运资格证模拟考试题下载什么软件
- 2024年四川客运从业资格证考试技巧口诀
- 2024年长沙客运从业资格证试题答案
- 汽车文化知识考试参考题库400题(含答案)
- WDZANYJY23低压电力电缆技术规格书
- 《水循环》-完整版课件
- 抗高血压药物基因检测课件
- 西游记 品味经典名著导读PPT
- 金坛区苏科版四年级心理健康教育第1课《我的兴趣爱好》课件(定稿)
- 心肌缺血和心肌梗死的心电图表现讲义课件
- 小学生性教育调查问卷
- 学历案的编写课件
- 旅游行政管理第二章旅游行政管理体制课件
- 卫生院关于召开基本公共卫生服务项目培训会的通知
评论
0/150
提交评论