版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版中学七年级下册数学期末复习试卷含答案大全一、选择题1.16的平方根是().A.8 B.4 C. D.2.下列图形中,能将其中一个图形平移得到另一个图形的是()A. B. C. D.3.点A(-2,-4)所在象限为().A.第一象限 B.第二象限 C.第三象限 D.第四象限4.给出下列命题:①等边三角形是等腰三角形;②三角形的重心是三角形三条中线的交点;③三角形的外角等于两个内角的和;④三角形的角平分线是射线;⑤三角形相邻两边组成的角叫三角形的内角;⑥三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外.其中正确命题的个数有()A.1个 B.2个 C.3个 D.4个5.如图,直线,点在直线上,下列结论正确的是()A. B.C. D.6.下列说法错误的是()A.3的平方根是B.﹣1的立方根是﹣1C.0.1是0.01的一个平方根D.算术平方根是本身的数只有0和17.珠江流域某江段江水流向经过B、C、D三点,拐弯后与原来方向相同.如图,若∠ABC=120°,∠BCD=80°,则∠CDE等于()A.20° B.40° C.60° D.80°8.如图,在平面直角坐标系中有点,点第一次向左跳动至,第二次向右跳动至,第三次向左跳动至,第四次向右跳动至,…依照此规律跳动下去,点第2020次跳动至的坐标为()A. B. C. D.九、填空题9.若则________.十、填空题10.若与点关于轴对称,则的值是___________;十一、填空题11.如图,△ABC中∠BAC=60°,将△ACD沿AD折叠,使得点C落在AB上的点C′处,连接C′D与C′C,∠ACB的角平分线交AD于点E;如果BC′=DC′;那么下列结论:①∠1=∠2;②AD垂直平分C′C;③∠B=3∠BCC′;④DC∥EC;其中正确的是:________;(只填写序号)十二、填空题12.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有_______个.十三、填空题13.将一条长方形纸带按如图方式折叠,若,则的度数为________°.十四、填空题14.将按下列方式排列,若规定表示第排从左向右第个数,则(20,9)表示的数的相反数是___十五、填空题15.点到两坐标轴的距离相等,则________.十六、填空题16.如图,在平面直角坐标系中,轴,轴,点、、、在轴上,,,,,.把一条长为2018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在处,并按的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标是_______.十七、解答题17.计算:(1)(2)十八、解答题18.求下列各式中的值:(1);(2).十九、解答题19.阅读并完成下列的推理过程.如图,在四边形ABCD中,E、F分别在线段AB、AD上,连结ED、EF,已知∠AFE=∠CDF,∠BCD+∠DEF=180°.证明BC∥DE;证明:∵∠AFE=∠CDF(已知)∴EF∥CD()∴∠DEF=∠CDE()∵∠BCD+∠DEF=180°()∴()∴BC∥DE()二十、解答题20.在平面直角坐标系中,为坐标原点,点的坐标为,点坐标为,且满足.(1)若没有平方根,且点到轴的距离是点到轴距离的倍,求点的坐标;(2)点的坐标为,的面积是的倍,求点的坐标.二十一、解答题21.如图①,将由5个边长为1的小正方形拼成的图形沿虚线剪开,将剪开后的图形拼成如图②所示的大正方形,设图②所示的大正方形的边长为a.(1)求a的值;(2)若a的整数部分为m,小数部分为n,试求式子的值.二十二、解答题22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及的点,并比较它们的大小.二十三、解答题23.已知:AB∥CD,截线MN分别交AB、CD于点M、N.(1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数;(2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由;(3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为(直接写出答案).二十四、解答题24.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交又照射巡视.若灯转动的速度是每秒2度,灯转动的速度是每秒1度.假定主道路是平行的,即,且.(1)填空:_________;(2)若灯射线先转动30秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯射线到达之前.若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.二十五、解答题25.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由;【问题迁移】如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β.(1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC=°.(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC与α、β之间的数量关系,并说明理由.(图1)(图2)【参考答案】一、选择题1.C解析:C【分析】如果一个数x的平方等于a,那么这个数x就叫做a的平方根(或二次方根).根据平方根的定义求解即可.【详解】解:(±4)2=1616的平方根是4.故选C.【点睛】主要考查平方根的定义,牢记正数的两个平方根互为相反数是解答本题的关键.2.A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移解析:A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移得到;C、图形由旋转变换得到,不符合平移的性质,不属于平移得到;D、图形的大小发生变化,不属于平移得到;故选:A.【点睛】本题考查平移的基本性质,平移不改变图形的形状、大小和方向.掌握平移的性质是解题的关键.3.C【分析】先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【详解】A(-2,-4)的横坐标是负数,纵坐标是负数,符合点在第三象限的条件,所以点A在第三象限.故选C.【点睛】本题主要考查点的坐标所在的象限,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据等边三角形的性质可以判断①,根据三角形重心的定义可判断②,根据三角形内角和定理可判断③,根据三角形角平分线的定义可以判断④,根据三角形的内角的定义可以判断⑤,根据三角形的高的定义以及直角三角形的高可以判断⑥.【详解】①等边三角形是等腰三角形,①正确;②三角形的重心是三角形三条中线的交点,②正确;③三角形的外角等于不相邻的两个内角的和,故③不正确;④三角形的角平分线是线段,故④不正确;⑤三角形相邻两边组成的角且位于三角形内部的角,叫三角形的内角,⑤错误;⑥三角形的高所在的直线交于一点,这一点可以在三角形内或在三角形外或者在三角形的边上.正确的有①②,共计2个,故选B【点睛】本题考查了命题的判断,等边三角形的性质,三角形的重心,三角形的内角和定理,三角形的角平分线,三角形的内角的定义,三角形垂心的位置,掌握相关性质定理是解题的关键.5.D【分析】根据两直线平行,同旁内角互补可得∠1+∠AOF=180°,再根据两直线平行,内错角相等可得∠3=∠AOC,而通过∠AOF=∠AOC-∠2,整理可得∠1+∠3-∠2=180°.【详解】解:∵AB∥EF,∴∠1+∠AOF=180°,∵CD∥AB,∴∠3=∠AOC,又∵∠AOF=∠AOC−∠2=∠3-∠2,∴∠1+∠3-∠2=180°.故选:D.【点睛】本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键.6.A【分析】根据平方根、立方根、算术平方根的概念进行判断即可.【详解】解:A、3的平方根是±,原说法错误,故此选项符合题意;B、﹣1的立方根是﹣1,原说法正确,故此选项不符合题意;C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意;D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意.故选:A.【点睛】本题考查了平方根、立方根、算术平方根的概念,掌握平方根、立方根、算术平方根的概念是解题的关键.7.A【分析】过点C作CF∥AB,则CF∥DE,利用平行线的性质和角的等量代换求解即可.【详解】解:由题意得,AB∥DE,过点C作CF∥AB,则CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故选:A.【点睛】本题主要考查了平行线的性质,合理作出辅助线是解题的关键.8.A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,解析:A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,观察发现,第2次跳动至点的坐标是,第4次跳动至点的坐标是,第6次跳动至点的坐标是,第8次跳动至点的坐标是,第次跳动至点的坐标是,则第2020次跳动至点的坐标是,故选:A.【点睛】本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.九、填空题9.【分析】根据平方与二次根式的非负性即可求解.【详解】依题意得2a+3=0.b-2=0,解得a=-,b=2,∴==【点睛】此题主要考查实数的性质,解题的关键是熟知实数的性质.解析:【分析】根据平方与二次根式的非负性即可求解.【详解】依题意得2a+3=0.b-2=0,解得a=-,b=2,∴==【点睛】此题主要考查实数的性质,解题的关键是熟知实数的性质.十、填空题10.1【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案.【详解】由点与点的坐标关于y轴对称,得:,,解得:,,∴.故答案为:.【点睛】本题解析:1【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案.【详解】由点与点的坐标关于y轴对称,得:,,解得:,,∴.故答案为:.【点睛】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.十一、填空题11.①②④【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,∵△ACD沿AD折叠,使得点C落在AB上的点C′处,∴∠1=∠2,A=AC,DC解析:①②④【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,∵△ACD沿AD折叠,使得点C落在AB上的点C′处,∴∠1=∠2,A=AC,DC=D,∴AD垂直平分C′C;∴①,②都正确;∵B=D,DC=D,∴B=D=DC,∴∠3=∠B,∠4=∠5,∴∠3=∠4+∠5=2∠5即∠B=2∠BC;∴③错误;根据折叠的性质,得∠ACD=∠AD=∠B+∠3=2∠3,∵∠ACB的角平分线交AD于点E,∴2(∠6+∠5)=2∠B,∴∴D∥EC∴④正确;故答案为:①②④.【点睛】本题考查了折叠的性质,平行线的判定,外角的性质,线段垂直平分线的性质,熟练掌握各种基本性质是解题的关键.十二、填空题12.4【分析】根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个【详解】∵射线DF⊥直线c∴∠1+∠2=90°,∠1解析:4【分析】根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个【详解】∵射线DF⊥直线c∴∠1+∠2=90°,∠1+∠3=90°即与∠1互余的角有∠2,∠3又∵a∥b∴∠3=∠5,∠2=∠4∴∠1互余的角有∠4,∠5∴与∠1互余的角有4个故答案为:4【点睛】本题考查了互余的定义,如果两个角的和等于(直角),就说这两个角互为余角,简称互余,即其中每一个角是另一个角的余角;本题还考查了平行线的性质定理,两直线平行,同位角相等.十三、填空题13.36【分析】根据平行线的性质、折叠的性质即可解决.【详解】∵AB∥CD,如图∴∠GEC=∠1=108゜由折叠的性质可得:∠2=∠FED∵∠2+∠FED+∠GEC=180゜∴∠2=解析:36【分析】根据平行线的性质、折叠的性质即可解决.【详解】∵AB∥CD,如图∴∠GEC=∠1=108゜由折叠的性质可得:∠2=∠FED∵∠2+∠FED+∠GEC=180゜∴∠2=故答案为:36【点睛】本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质.十四、填空题14.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列解析:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数,∵,即1,,,中第三个数:,∴的相反数为故答案为.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.十五、填空题15.或.【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.【详解】解:∵点到两坐标轴的距离相等,∴,或,解得,或,故答案为:或.【点睛】本题考查了点到坐标轴的距解析:或.【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.【详解】解:∵点到两坐标轴的距离相等,∴,或,解得,或,故答案为:或.【点睛】本题考查了点到坐标轴的距离,解题关键是明确到坐标轴的距离是坐标的绝对值.十六、填空题16.(1,0)【分析】先求出凸形ABCDEFGHP的周长为20,得到2018÷20的余数为18,由此即可解决问题.【详解】解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G解析:(1,0)【分析】先求出凸形ABCDEFGHP的周长为20,得到2018÷20的余数为18,由此即可解决问题.【详解】解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2),∴“凸”形ABCDEFGHP的周长为20,2018÷20的余数为18,∴细线另一端所在位置的点在P处,坐标为(1,0).故答案为:(1,0).【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型.十七、解答题17.(1)-3;(2)-11.【分析】(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案.【详解】(1)解:原式=(2)解解析:(1)-3;(2)-11.【分析】(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案.【详解】(1)解:原式=(2)解:原式==.【点睛】本题考查的是乘法的分配律的应用,乘方运算,求一个数的立方根,求一个数的绝对值,掌握以上知识是解题的关键.十八、解答题18.(1)或;(2)【分析】(1)根据平方根的性质求解即可;(2)根据立方根的性质求解即可;【详解】(1),,,或,∴或;(2),,;【点睛】本题主要考查了平方根的性质应用和解析:(1)或;(2)【分析】(1)根据平方根的性质求解即可;(2)根据立方根的性质求解即可;【详解】(1),,,或,∴或;(2),,;【点睛】本题主要考查了平方根的性质应用和立方根的性质应用,准确计算是解题的关键.十九、解答题19.同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行.【分析】根据平行线的性质与判定填空即可【详解】证明:∵∠AFE=∠CD解析:同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行.【分析】根据平行线的性质与判定填空即可【详解】证明:∵∠AFE=∠CDF(已知)∴EF∥CD(同位角相等,两直线平行)∴∠DEF=∠CDE(两直线平行,内错角相等)∵∠BCD+∠DEF=180°(已知)∴∠BCD+∠CDE=180°(等量代换)∴BC∥DE(同旁内角互补,两直线平行)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行【点睛】本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键.二十、解答题20.(1)(-2,6);(2)(,)或(8,-4)【分析】(1)根据平方根的意义得到a<0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标;(2)利用A(a,-解析:(1)(-2,6);(2)(,)或(8,-4)【分析】(1)根据平方根的意义得到a<0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标;(2)利用A(a,-a)和B(a,4-a)得到AB=4,AB与y轴平行,由于点D的坐标为(4,-2),△OAB的面积是△DAB面积的2倍,则判断点A、点B在y轴的右侧,即a>0,根据三角形面积公式得到,解方程得到a值,然后写出B点坐标.【详解】解:(1)∵a没有平方根,∴a<0,∴-a>0,∵点B到x轴的距离是点A到x轴距离的3倍,∴,∵a+b=4,∴,解得:a=-2或a=1(舍),∴b=6,此时点B的坐标为(-2,6);(2)∵点A的坐标为(a,-a),点B坐标为(a,4-a),∴AB=4,AB与y轴平行,∵点D的坐标为(4,-2),△OAB的面积是△DAB面积的2倍,∴点A、点B在y轴的右侧,即a>0,∴,解得:a=或a=8,∴B点坐标为(,)或(8,-4).【点睛】本题考查了坐标与图形性质:利用点的坐标计算线段的长和判断线段与坐标轴的位置关系.也考查了三角形的面积公式和平方根的性质.二十一、解答题21.(1);(2)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a;(2)估算出a的范围,得到整数部分和小数部分,代入计算即可.【详解】解:(1)由题意可得:,∵a>0,∴;解析:(1);(2)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a;(2)估算出a的范围,得到整数部分和小数部分,代入计算即可.【详解】解:(1)由题意可得:,∵a>0,∴;(2)∵,∴,∴m=2,n=,∴====1【点睛】本题考查了算术平方根的应用,无理数的估算,解题的关键是能估算出的范围.二十二、解答题22.(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)①根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②解析:(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)①根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=,故答案为:,;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b,∴b2=5,∴b=±,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+,看图可知,表示-0.5的N点在M点的右方,∴比较大小:.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.二十三、解答题23.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E作直线EH∥AB,由角平分线的性质和平行解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解;(3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【详解】解:(1)∵+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:过点E作直线EH∥AB,∵DF平分∠CDE,∴设∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如图3,设MQ与CD交于点E,∵MQ平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q与∠CPM的比值为,故答案为:.【点睛】本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.二十四、解答题24.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度货物买卖合同协议模板2篇
- 《先心药本》课件
- 开题报告:中国教学论话语体系建设的百年历程与基本经验研究
- 市政道路监理大纲
- 人工挖孔抗滑桩支护施工方案
- 开题报告:学科能力导向的增值评价策略及其可视化研究
- 开题报告:新时代师范生专业素养的构成要件、发展困境及内生机制研究
- 2024届南平市重点中学高考仿真模拟数学试题试卷
- 《KUKA机器人操作》课件
- 2024年医疗器械销售协议模板版B版
- 《不稳定型心绞痛》课件
- 智能化改造的力量
- 生物-安徽省2025届高三第一次五校(颍上一中、蒙城一中、淮南一中、怀远一中、涡阳一中)联考试题和答案
- 自媒体宣传采购项目竞争性磋商招投标书范本
- 2023年民航东北空管局人员招聘考试真题
- 2025(新统编版)八年级历史上册 第5单元 大单元教学设计
- 老年人护理风险防控
- 云南省高中信息技术学业水平考试知识点复习
- 2024年供应链金融服务平台合作协议
- 养老院防恐防暴应急预案
- 2024高考物理一轮复习:牛顿运动定律(测试)(学生版+解析)
评论
0/150
提交评论