版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省开远一中2024届高二数学第一学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,为双曲线的两个焦点,点P在双曲线上且满足,那么点P到x轴的距离为()A. B.C. D.2.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A.或 B.或C.或 D.或3.已知向量,,且与互相平行,则的值为()A.-2 B.C. D.4.焦点坐标为,(0,4),且长半轴的椭圆方程为()A. B.C. D.5.甲,乙、丙、丁、戊共5人随机地排成一行,则甲、乙相邻,丙、丁不相邻的概率为()A. B.C. D.6.据记载,欧拉公式是由瑞士著名数学家欧拉发现的,该公式被誉为“数学中的天桥”特别是当时,得到一个令人着迷的优美恒等式,将数学中五个重要的数(自然对数的底,圆周率,虚数单位,自然数的单位和零元)联系到了一起,有些数学家评价它是“最完美的数学公式”.根据欧拉公式,复数的虚部()A. B.C. D.7.椭圆的一个焦点坐标为,则实数m的值为()A.2 B.4C. D.8.数列1,-3,5,-7,9,…的一个通项公式为A. B.C. D.9.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是6”,丙表示事件“两次取出的球的数字之和是5”,丁表示事件“两次取出的球的数字之和是偶数”,则下列判断正确的是()A.甲与丙是互斥事件 B.乙与丙是对立事件C.甲与丁是对立事件 D.丙与丁是互斥事件10.已知为偶函数,且当时,,其中为的导数,则不等式的解集为()A. B.C. D.11.已知F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,当a为3和5时,点P的轨迹分别为()A.双曲线和一条直线 B.双曲线和一条射线C.双曲线的一支和一条直线 D.双曲线的一支和一条射线12.已知集合,集合或,是实数集,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在空间直角坐标系中,已知向量,则的值为__________.14.已知圆锥的高为,体积为,则以该圆锥的母线为半径的球的表面积为______________.15.函数的图象在点处的切线方程为___________.16.已知椭圆,为其右焦点,过垂直于轴的直线与椭圆相交所得的弦长为,则椭圆的方程为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和,数列是各项均为正数的等比数列,其中,且成等差数列.(1)求的通项公式;(2)设,求数列的前项和.18.(12分)已知等差数列中,,.(1)求的通项公式;(2)若,求数列的前n项和.19.(12分)设:实数满足,:实数满足(1)若,且为真,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围20.(12分)已知为等差数列,前n项和为,数列是首项为1的等比数列,,,.(1)求和的通项公式;(2)求数列的前n项和.21.(12分)年世界人工智能大会已于年月在上海徐汇西岸举行,某高校的志愿者服务小组受大会展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏.如图所示,、两个信号源相距米,是的中点,过点的直线与直线的夹角为,机器猫在直线上运动,机器鼠的运动轨迹始终满足:接收到点的信号比接收到点的信号晚秒(注:信号每秒传播米).在时刻时,测得机器鼠距离点为米.(1)以为原点,直线为轴建立平面直角坐标系(如图),求时刻时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线不超过米的区域运动时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?22.(10分)如图甲,在直角三角形中,已知,,,D,E分别是的中点.将沿折起,使点A到达点的位置,且,连接,得到如图乙所示的四棱锥,M为线段上一点.(1)证明:平面平面;(2)过B,C,M三点的平面与线段A'E相交于点N,从下列三个条件中选择一个作为已知条件,求直线DN与平面A'BC所成角的正弦值.①;②直线与所成角的大小为;③三棱锥的体积是三棱锥体积的注:如果选择多个条件分别解答,按第一个解答计分.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设,由双曲线的性质可得的值,再由,根据勾股定理可得的值,进而求得,最后利用等面积法,即可求解【详解】设,,为双曲线的两个焦点,设焦距为,,点P在双曲线上,,,,,,的面积为,利用等面积法,设的高为,则为点P到x轴的距离,则,故选:D【点睛】本题考查双曲线的性质,难度不大.2、D【解析】由光的反射原理知,反射光线的反向延长线必过点,设反射光线所在直线的斜率为,则反射光线所在直线方程为:,即:.又因为光线与圆相切,所以,,整理:,解得:,或,故选D考点:1、圆的标准方程;2、直线的方程;3、直线与圆的位置关系.3、A【解析】应用空间向量坐标的线性运算求、的坐标,根据空间向量平行有,即可求的值.【详解】由题设,,,∵与互相平行,∴且,则,可得.故选:A4、B【解析】根据题意可知,即可由求出,再根据焦点位置得出椭圆方程【详解】因为,所以,而焦点在轴上,所以椭圆方程为故选:B5、A【解析】先求出所有的基本事件,再求出甲、乙相邻,丙、丁不相邻的基本事件,根据古典概型的概率公式求解即可【详解】甲,乙、丙、丁、戊共5人随机地排成一行有种方法,甲、乙相邻,丙、丁不相邻的排法为先将甲、乙捆绑在一起,再与戊进行排列,然后丙、丁从3个空中选2个空插入,则共有种方法,所以甲、乙相邻,丙、丁不相邻的概率为,故选:A6、D【解析】由欧拉公式的定义和复数的概念进行求解.【详解】由题意,得,则复数的虚部为.故选:D.7、C【解析】由焦点坐标得到,求解即可.【详解】根据焦点坐标可知,椭圆焦点在y轴上,所以有,解得故选:C.8、C【解析】观察,奇偶相间排列,偶数位置为负,所以为,数字是奇数,满足2n-1,所以可求得通项公式.【详解】由符号来看,奇数项为正,偶数项为负,所以符号满足,由数值1,3,5,7,9…显然满足奇数,所以满足2n-1,所以通项公式为,选C.【点睛】本题考查观察法求数列的通项公式,解题的关键是培养对数字的敏锐性,属于基础题.9、D【解析】根据互斥事件和对立事件的定义判断【详解】当第一次取出1,第二次取出4时,甲丙同时发生,不互斥不对立;第二次取出的球的数字是6与两次取出的球的数字之和是5不可能同时发生,但可以同时不发生,不对立,当第一次取出1,第二次取出3时,甲与丁同时发生,不互斥不对立,两次取出的球的数字之和是5与两次取出的球的数字之和是偶数不可以同时发生,但可以同时不发生,因此是互斥不对立故选:D10、A【解析】根据已知不等式和要求解的不等式特征,构造函数,将问题转化为解不等式.通过已知条件研究g(x)的奇偶性和单调性即可解该不等式.【详解】令,则根据题意可知,,∴g(x)是奇函数,∵,∴当时,,单调递减,∵g(x)是奇函数,g(0)=0,∴g(x)在R上单调递减,由不等式得,.故选:A.11、D【解析】由双曲线定义结合参数a的取值分类讨论而得.【详解】依题意得,当时,,且,点P的轨迹为双曲线的右支;当时,,故点P的轨迹为一条射线.故选D.故选:D12、A【解析】先化简集合,再由集合的交集、补集运算求解即可【详解】,或,故故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题知,进而根据向量数量积运算的坐标表示求解即可.【详解】解:因为向量,所以,所以故答案为:14、【解析】利用圆锥体积公式可求得圆锥底面半径,利用勾股定理可得母线长;根据球的表面积公式可求得结果.【详解】设圆锥的底面半径为,母线长为,圆锥体积,,,以为半径的球的表面积.故答案为:.15、【解析】求导得到,计算,根据点斜式可得到切线方程.【详解】因此,则,故,又点在函数的图象上,故切线方程为:,即.故答案为:16、##【解析】将代入椭圆的方程,可得出,可得出关于的等式,求出的值,进而可求得的值,由此可得出椭圆的方程.【详解】将代入椭圆的方程可得,可得,由已知可得,整理可得,,解得,所以,,因此,椭圆的方程为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)利用求出数列的通项,再求出等比数列的公比即得解;(2)求出,再利用错位相减法求解.【小问1详解】解:,.当时,,适合..设等比数列公比为,,,即,或(舍去),.【小问2详解】解:,,,上述两式相减,得,所以所以.18、(1);(2).【解析】(1)先设等差数列的公差为,由题中条件,列出方程求出首项和公差,即可得出通项公式;(2)根据(1)的结果,得到,再由等比数列的求和公式,即可得出结果.【详解】(1)设等差数列的公差为,因为,,所以,解得,所以;(2)由(1)可得,,即数列为等比数列,所以数列的前n项和.19、(1)(2)【解析】(1)根据二次不等式与分式不等式的求解方法求得命题p,q为真时实数x的取值范围,再求交集即可;(2)先求得,再根据是的必要不充分条件可得,再根据集合包含关系,根据区间端点列不等式求解即可【小问1详解】当时,,解得,即p为真时,实数x的取值范围为.由,解得,即q为真时,实数x的取值范围为若为真,则,解得实数x的取值范围为【小问2详解】若p是q的必要不充分条件,则且设,,则,又由,得,因为,则,有,解得因此a的取值范围为20、(1)的通项公式为,的通项公式为;(2).【解析】(1)用基本量表示题干中的量,联立求解即可;(2)由,,用乘公比错位相减法求和即可.【详解】(1)设等差数列的公差为d,等比数列的公比为q.由已知,得,而,所以,解得,所以.由得.①,由得.②,联立①②解得,所以.故的通项公式为,的通项公式为.(2)设数列的前n项和为,由,得.,,上述两式相减,得,所以,即.21、(1);(2)没有.【解析】(1)设机器鼠位置为点,由题意可得,即,可得的轨迹为以、为焦点的双曲线的右支,分析取值,即得解双曲线的方程,由可得P点坐标.(2)转化机器鼠与直线最近的距离为与直线平行的直线与双曲线相切时,平行线间的距离,设的方程为,与双曲线联立,求出的值,再利用平行线间的距离公式,即得解【详解】(1)设机器鼠位置为点,、,由题意可得,即,可得的轨迹为以、为焦点的双曲线的右支,设其方程为:(,),则、、,则的轨迹方程为:(),时刻时,,即,可得机器鼠所在位置的坐标为;(2)由题意,直线,设直线的平行线的方程为,联立,可得:,,解得,又,∴,∴,即:与双曲线的右支相切,切点即为双曲线右支上距离最近的点,此时与的距离为,即机器鼠距离最小的距离为,则机器鼠保持目前运动轨迹不变,没有“被抓”的风险.22、(1)证明见解析(2)【解析】(1)由线面垂直的判定定理及面面垂直的判定定理可得证;(2)分别选①,②,③可求得为的中点,再以为坐标原点,向量的方向分别为轴,轴,轴建立空间直角坐标系.利用空间向量求得所求的线面角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 面包美食课程设计
- 美国供应链课程设计
- 雨污分流课程设计
- 饲草打包机课程设计
- 锥齿轮轴毕业课程设计
- 销售执行力课程设计
- 钢屋架有檩体系课程设计
- 2024音像出版社与数字图书馆之间的版权许可与电子借阅合同
- 2024智能物业管理服务系统建设合同
- 2025年度锅炉设备销售与售后服务合同3篇
- 15.5-博物馆管理法律制度(政策与法律法规-第五版)
- 水泥厂钢结构安装工程施工方案
- 2023光明小升初(语文)试卷
- 三年级上册科学说课课件-1.5 水能溶解多少物质|教科版
- GB/T 7588.2-2020电梯制造与安装安全规范第2部分:电梯部件的设计原则、计算和检验
- GB/T 14600-2009电子工业用气体氧化亚氮
- 小学道德与法治学科高级(一级)教师职称考试试题(有答案)
- 河北省承德市各县区乡镇行政村村庄村名居民村民委员会明细
- 实用性阅读与交流任务群设计思路与教学建议
- 应急柜检查表
- 通风设施标准
评论
0/150
提交评论