七年级下册数学期末试卷综合测试卷(word含答案)_第1页
七年级下册数学期末试卷综合测试卷(word含答案)_第2页
七年级下册数学期末试卷综合测试卷(word含答案)_第3页
七年级下册数学期末试卷综合测试卷(word含答案)_第4页
七年级下册数学期末试卷综合测试卷(word含答案)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

七年级下册数学期末试卷综合测试卷(word含答案)一、选择题1.实数4的算术平方根是()A. B.2 C. D.162.下列现象中是平移的是()A.翻开书中的每一页纸张 B.飞碟的快速转动C.将一张纸沿它的中线折叠 D.电梯的上下移动3.在平面直角坐标系中,点A(m,n)经过平移后得到的对应点A′(m+3,n﹣4)在第二象限,则点A所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.下列语句中,是假命题的是()A.有理数和无理数统称实数B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.在同一平面内,垂直于同一条直线的两条直线互相平行D.两个锐角的和是锐角5.如图所示,,三角板如图放置,其中,若,则的度数是()A. B. C. D.6.下列计算正确的是()A. B. C. D.7.直角三角板与两边平行的纸条如图所示放置,下列结论不一定正确的是()A. B. C. D.8.在平面直角坐标系xOy中,对于点P(x,y),我们把P1(y﹣1,﹣x﹣1)叫做点P的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,这样依次得到各点.若A2021的坐标为(﹣3,2),设A1(x,y),则x+y的值是()A.﹣5 B.3 C.﹣1 D.5二、填空题9.若=x,则x的值为______.10.已知点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,那么a+b=_____.11.已知点A(3a+5,a﹣3)在二、四象限的角平分线上,则a=__________.12.如图,已知AB//EF,∠B=40°,∠E=30°,则∠C-∠D的度数为________________.13.如图,沿折痕折叠长方形,使C,D分别落在同一平面内的,处,若,则的大小是_______.14.对于这样的等式:若(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,则﹣32a0+16a1﹣8a2+4a3﹣2a4+a5的值为_____.15.已知点,轴,,则点C的坐标是______.16.如图,在平面直角坐标系上有点A(1,0),第一次点A跳动至点A1(﹣1,1),第二次点A1跳动至点A2(2,1),第三次点A2跳动至点A3(﹣2,2),第四次点A3跳动至点A4(3,2),…依此规律跳动下去,则点A2021与点A2022之间的距离是_______.三、解答题17.(1)计算:(2)解方程:18.求下列各式中的x值:(1)169x2=144;(2)(x-2)2-36=0.19.完成下面的证明.如图,AB∥CD,∠B+∠D=180°,求证:BE∥DF.分析:要证BE∥DF,只需证∠1=∠D.证明:∵AB∥CD(已知)∴∠B+∠1=180°()∵∠B+∠D=180°(已知)∴∠1=∠D()∴BE∥DF()20.以学校为坐标原点建立平面直角坐标系,图中标明了这所学校附近的一些地方,(1)公交车站的坐标是,宠物店的坐标是;(2)在图中标出公园,书店的位置;(3)将医院的位置怎样平移得到人寿保险公司的位置.21.已知:是的整数部分,是的小数部分.求:(1),值(2)的平方根.二十二、解答题22.(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm2的正方体纸盒,则这个正方体的棱长是.(2)为了增加小区的绿化面积,幸福公园准备修建一个面积121πm2的草坪,草坪周围用篱笆围绕.现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的.如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由;(3)在(2)的方案中,审批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草坪的实际面积就减少了21πm2,请你根据此方案求出各小路的宽度(π取整数).二十三、解答题23.(1)如图①,若∠B+∠D=∠E,则直线AB与CD有什么位置关系?请证明(不需要注明理由).(2)如图②中,AB//CD,又能得出什么结论?请直接写出结论.(3)如图③,已知AB//CD,则∠1+∠2+…+∠n-1+∠n的度数为.24.如图,,平分,设为,点E是射线上的一个动点.(1)若时,且,求的度数;(2)若点E运动到上方,且满足,,求的值;(3)若,求的度数(用含n和的代数式表示).25.如图,直线,、是、上的两点,直线与、分别交于点、,点是直线上的一个动点(不与点、重合),连接、.(1)当点与点、在一直线上时,,,则_____.(2)若点与点、不在一直线上,试探索、、之间的关系,并证明你的结论.26.(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数;(2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数;(3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由.【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的定义,求一个非负数a的算术平方根,也就是求一个非负数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0.【详解】解:∵22=4,∴4的算术平方根是2.故选B.【点睛】本题主要考查了算术平方根的定义,解题的关键在于能够掌握一个非负数的算术平方根具有非负性.2.D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现解析:D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现象;C:将一张纸沿它的中线折叠,这是轴对称现象;D:电梯的上下移动这是平移现象.故选:D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.B【分析】构建不等式求出m,n的范围可得结论.【详解】解:由题意,,解得:,∴A(m,n)在第二象限,故选:B.【点睛】此题主要考查坐标与图形变化-平移.解题的关键是理解题意,学会构建不等式解决问题.4.D【分析】根据实数的分类,垂直的性质,平行线的判定,锐角的定义逐项分析即可【详解】A.有理数和无理数统称实数,正确,是真命题,不符合题意;B.在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,不符合题意;C.在同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;D.两个锐角的和不一定是锐角,例如,故D选项是假命题,符合题意故选D【点睛】本题考查了真假命题的判定,实数的分类,垂直的性质,平行线的判定,锐角的定义,掌握相关性质定理是解题的关键.5.B【分析】作BD∥l1,根据平行线的性质得∠1=∠ABD=40°,∠CBD=∠2,利用角的和差即可求解.【详解】解:作BD∥l1,如图所示:∵BD∥l1,∠1=40°,∴∠1=∠ABD=40°,又∵l1∥l2,∴BD∥l2,∴∠CBD=∠2,又∵∠CBA=∠CBD+∠ABD=90°,∴∠CBD=50°,∴∠2=50°.故选:B.【点睛】本题考查平行线的性质,角的和差等相关知识,重点掌握平行线的性质,难点是作辅线构建平行线.6.D【分析】分别根据算术平方根的定义以及立方根的定义逐一判断即可.【详解】解:A、,故本选项不合题意;B、,故本选项不合题意;C、,故本选项不合题意;D、,故本选项符合题意;故选:D.【点睛】本题主要考查算术平方根及立方根,熟练掌握求一个数的算术平方根及立方根是解题的关键.7.D【分析】直接利用平行线性质解题即可【详解】解:∵直尺的两边互相平行,∴∠1=∠2,∠3=∠4,∵三角板的直角顶点在直尺上,∴∠2+∠4=90°,∴A,B,C正确.故选D.【点睛】本题考查平行线的基本性质,基础知识扎实是解题关键8.C【分析】列出部分An点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A2021的坐标为(﹣3,2),找出A1的坐标,由此即可得出x、y的值,二者相加即可得出结论.【解析:C【分析】列出部分An点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A2021的坐标为(﹣3,2),找出A1的坐标,由此即可得出x、y的值,二者相加即可得出结论.【详解】解:∵A2021的坐标为(﹣3,2),根据题意可知:A2020的坐标为(﹣3,﹣2),A2019的坐标为(1,﹣2),A2018的坐标为(1,2),A2017的坐标为(﹣3,2),…∴A4n+1(﹣3,2),A4n+2(1,2),A4n+3(1,﹣2),A4n+4(﹣3,﹣2)(n为自然数).∵2021=505×4•••1,∵A2021的坐标为(﹣3,2),∴A1(﹣3,2),∴x+y=﹣3+2=﹣1.故选:C.【点睛】本题考查了规律型中的点的坐标的变化,解决该题型题目时,根据友好点的定义列出部分点的坐标,根据坐标的变化找出变化规律是关键.二、填空题9.0或1【分析】根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.【详解】∵02=0,12=1,∴0的算术平方根为0,1的算术平方根解析:0或1【分析】根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.【详解】∵02=0,12=1,∴0的算术平方根为0,1的算术平方根为1.故答案是:0或1.【点睛】考查了算术平方根的定义,解题关键是利用算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.10.-3.【分析】关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b的值.【详解】解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,∴,解得,∴a+b=解析:-3.【分析】关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b的值.【详解】解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,∴,解得,∴a+b=﹣3,故答案为:﹣3.【点睛】本题考查的是关于轴对称的两个点的坐标关系,掌握以上知识是解题的关键.11.﹣【详解】∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣.故答案是:﹣.解析:﹣【详解】∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣.故答案是:﹣.12.10°【分析】过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得AB∥CG∥DH∥EF,从而可得∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,即可求解.【详解】解析:10°【分析】过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得AB∥CG∥DH∥EF,从而可得∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,即可求解.【详解】解:如图,过点C作CG∥AB,过点D作DH∥EF,∵AB//EF,∴AB∥CG∥DH∥EF,∵∠B=40°,∠E=30°,∴∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,∴∠BCD-∠CDE=∠BCG-∠EDH=40°-30°=10°.故答案为:10°.【点睛】本题主要考查了平行线的性质,准确作出辅助线是解题的关键.13.70【分析】由题意易图可得,由折叠的性质可得,然后问题可求解.【详解】解:由长方形可得:,∵,∴,由折叠可得,∴;故答案为70.【点睛】本题主要考查平行线的性质及折叠的性质,熟解析:70【分析】由题意易图可得,由折叠的性质可得,然后问题可求解.【详解】解:由长方形可得:,∵,∴,由折叠可得,∴;故答案为70.【点睛】本题主要考查平行线的性质及折叠的性质,熟练掌握平行线的性质及折叠的性质是解题的关键.14.-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值.15.(6,2)或(4,2)【分析】根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解.【详解】∵点A(1,2),AC∥x轴,解析:(6,2)或(4,2)【分析】根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解.【详解】∵点A(1,2),AC∥x轴,∴点C的纵坐标为2,∵AC=5,∴点C在点A的左边时横坐标为1-5=-4,此时,点C的坐标为(-4,2),点C在点A的右边时横坐标为1+5=6,此时,点C的坐标为(6,2)综上所述,则点C的坐标是(6,2)或(-4,2).故答案为(6,2)或(-4,2).【点睛】本题考查了点的坐标,熟记平行于x轴直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论.16.2023【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2解析:2023【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2022的坐标,进而可求出点A2021与点A2022之间的距离.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2022次跳动至点的坐标是(1012,1011),第2021次跳动至点的坐标是(-1011,1011).∵点A2021与点A2022的纵坐标相等,∴点A2021与点A2022之间的距离=1012-(-1011)=2023,故答案为:2023.【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.三、解答题17.(1);(2)x=【分析】(1)先算乘方、绝对值和开方,再算乘法,最后算加减;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:(1)==解析:(1);(2)x=【分析】(1)先算乘方、绝对值和开方,再算乘法,最后算加减;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:(1)===;(2),去分母,可得:3(x+1)-6=2(2-3x),去括号,可得:3x+3-6=4-6x,移项,可得:3x+6x=4-3+6,合并同类项,可得:9x=7,系数化为1,可得:x=.【点睛】此题主要考查了实数的混合运算,解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.18.(1)x=±;(2)x=8或x=-4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【详解】解:(1)169x2=144,移项得:x2=,解得:x=±.解析:(1)x=±;(2)x=8或x=-4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【详解】解:(1)169x2=144,移项得:x2=,解得:x=±.(2)(x-2)2-36=0,移项得:(x-2)2=36,开方得:x-2=6或x-2=-6解得:x=8或x=-4.故答案为(1)x=±;(2)x=8或x=-4.【点睛】本题考查利用平方根解方程,解答此题的关键是掌握平方根的概念.19.两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE∥DF,只需证∠1=∠D,由AB∥CD可知∠B+∠1=180°,又有∠B+∠D=180°,由此即可证得.【详解】解析:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE∥DF,只需证∠1=∠D,由AB∥CD可知∠B+∠1=180°,又有∠B+∠D=180°,由此即可证得.【详解】证明:∵AB∥CD(已知)∴∠B+∠1=180°(两直线平行,同旁内角互补)∵∠B+∠D=180°(已知)∴∠1=∠D(同角的补角相等),∴BE∥DF(同位角相等,两直线平行)故答案为:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1),;(2)见解析;(3)向右5个单位,再向上5个单位【分析】(1)观察平面直角坐标系得:公交车站在轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离轴2个单位,距离轴3个单位,即解析:(1),;(2)见解析;(3)向右5个单位,再向上5个单位【分析】(1)观察平面直角坐标系得:公交车站在轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离轴2个单位,距离轴3个单位,即可求解;(2)公园在第二象限内,距离轴2个单位,距离轴3个单位;书店在第一象限内,距离轴1个单位,距离轴1个单位;即可解答;(3)将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置,即可.【详解】解:(1)观察平面直角坐标系得:公交车站在轴负半轴距离坐标原点1个单位,故公交车站的坐标是;宠物店在第四象限内,距离轴2个单位,距离轴3个单位,故宠物店的坐标是;(2)∵公园,书店∴公园在第二象限内,距离轴2个单位,距离轴3个单位;书店在第一象限内,距离轴1个单位,距离轴1个单位;位置如图所示:(3))将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置.【点睛】本题主要考查了平面直角坐标系,用坐标来表示点的位置,根据位置写出点的坐标,熟练掌握平面直角坐标系内每个象限内点的坐标的特征是解题的关键.21.(1),.(2).【分析】(1)首先得出接近的整数,进而得出a,b的值;(2)根据平方根即可解答.【详解】,∴整数部分,小数部分.(2)原式,则的平方根为.【点睛】此题解析:(1),.(2).【分析】(1)首先得出接近的整数,进而得出a,b的值;(2)根据平方根即可解答.【详解】,∴整数部分,小数部分.(2)原式,则的平方根为.【点睛】此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.二十二、解答题22.(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为【分析】(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可;(2)根据正方形的周解析:(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为【分析】(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可;(2)根据正方形的周长公式以及圆形的周长公式即可求出答案;(3)根据图形的平移求解.【详解】解:(1)∵正方体有6个面且每个面都相等,∴正方体的一个面的面积=2dm2.∴正方形的棱长=dm;故答案为:dm;(2)甲方案:设正方形的边长为xm,则x2=121∴x=11∴正方形的周长为:4x=44m乙方案:设圆的半径rm为,则r2==121∴r=11∴圆的周长为:2=22m∴442222(2-∵4>∴2∴∴正方形的周长比圆的周长大故从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)依题意可进行如图所示的平移,设小路的宽度为ym,则(11–y)2=12121∴11–y=10∴y=∵取整数∴y=答:根据此方案求出小路的宽度为;【点睛】本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键;二十三、解答题23.(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)•180°【分析】(1)过点E作EF//AB,利用平行线的性质则可得出解析:(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)•180°【分析】(1)过点E作EF//AB,利用平行线的性质则可得出∠B=∠BEF,再由已知及平行线的判定即可得出AB∥CD;(2)如图,过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,根据探究(1)的证明过程及方法,可推出∠E+∠G=∠B+∠F+∠D,则可由此得出规律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)如图,过点M作EF∥AB,过点N作GH∥AB,则可由平行线的性质得出∠1+∠2+∠MNG=180°×2,依此即可得出此题结论.【详解】解:(1)过点E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(内错角相等,两直线平行).∴AB//CD.(2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.故答案为:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.(3)如图,过点M作EF∥AB,过点N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG=180°×2,依次类推:∠1+∠2+…+∠n-1+∠n=(n-1)•180°.故答案为:(n-1)•180°.【点睛】本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.24.(1)60°;(2)50°;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先解析:(1)60°;(2)50°;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论;(3)根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,,列出等量关系求解即可等处结论;②若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论.【详解】解:(1),,,平分,,,又,;(2)根据题意画图,如图1所示,,,,,,,又平分,,;(3)①如图2所示,,,平分,,,又,,,解得;②如图3所示,,,平分,,,又,,,解得.综上的度数为或.【点睛】本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补.

两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键.25.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出=60°,计算∠PFD即可;(2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;②当点P在AB上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可.【详解】(1)当点与点、在一直线上时,作图如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案为:120°;(2)满足关系式为∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.证明:根据点P是动点,分三种情况讨论:①当点P在AB与CD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论