版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省墨江第二中学2024届高二数学第一学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,若输出的的值为,则判断框中应填入()A.? B.?C.? D.?2.在各项都为正数的等比数列中,首项,前3项和为21,则()A.84 B.72C.33 D.1893.已知等比数列中,,则由此数列的奇数项所组成的新数列的前项和为()A. B.C. D.4.已知点F为抛物线C:的焦点,点,若点Р为抛物线C上的动点,当取得最大值时,点P恰好在以F,为焦点的椭圆上,则该椭圆的离心率为()A. B.C. D.5.如图,在平行六面体中,设,,,用基底表示向量,则()A. B.C. D.6.已知直线和平面,且在上,不在上,则下列判断错误的是()A.若,则存在无数条直线,使得B.若,则存在无数条直线,使得C.若存在无数条直线,使得,则D.若存在无数条直线,使得,则7.已知直线l:的倾斜角为,则()A. B.1C. D.-18.已知焦点在轴上的双曲线的一条渐近线方程为,则该双曲线的离心率为()A. B.C.2 D.9.在一个正方体中,为正方形四边上的动点,为底面正方形的中心,分别为中点,点为平面内一点,线段与互相平分,则满足的实数的值有A.0个 B.1个C.2个 D.3个10.直线的一个方向向量为,则它的斜率为()A. B.C. D.11.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B.C. D.12.《九章算数》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积为3升,下面3节的容积共4升,则第五节的容积为()A.1升 B.升C.升 D.升二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆()中,成等比数列,则椭圆的离心率为_______.14.已知曲线在点处的切线的斜率为,则______15.如图是用斜二测画法画出水平放置的正三角形ABC的直观图,其中,则三角形的面积为______.16.已知数列是公差不为零的等差数列,,,成等比数列,第1,2项与第10,11项的和为68,则数列的通项公式是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)若函数的图象在点处的切线与平行,求b的值;(2)在(1)的条件下证明:18.(12分)在平面直角坐标系中,已知点在椭圆上,其中为椭圆E的离心率(1)求b的值;(2)A,B分别为椭圆E的左右顶点,过点的直线l与椭圆E相交于M,N两点,直线与交于点T,求证:19.(12分)若函数与的图象有一条与直线平行的公共切线,求实数a的值20.(12分)已知圆台的上下底面半径分别为,母线长为.求:(1)圆台的高;(2)圆台的体积注:圆台体积公式:,其中,S分别为上下底面面积,h为圆台的高21.(12分)从①;②;③这三个条件中任选一个,补充在下面问题中,并作答设等差数列的前n项和为,,______;设数列的前n项和为,(1)求数列和的通项公式;(2)求数列的前项和注:作答前请先指明所选条件,如果选择多个条件分别解答,按第一个解答计分22.(10分)已知椭圆上顶点与椭圆的左,右顶点连线的斜率之积为(1)求椭圆C的离心率;(2)若直线与椭圆C相交于A,B两点,,求椭圆C的标准方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】本题为计算前项和,模拟程序,实际计算求和即可得到的值.【详解】由题意可知:输出的的值为数列的前项和.易知,则,令,解得.即前7项的和.为故判断框中应填入“?”.故选:C.2、A【解析】分析:设等比数列的公比为,根据前三项的和为列方程,结合等比数列中,各项都为正数,解得,从而可以求出的值.详解:设等比数列的公比为,首项为3,前三项的和为,,解之得或,在等比数列中,各项都为正数,公比为正数,舍去),,故选A.点睛:本题考查以一个特殊的等比数列为载体,通过求连续三项和的问题,着重考查了等比数列的通项,等比数列的性质和前项和等知识点,属于简单题.3、B【解析】确实新数列是等比数列及公比、首项后,由等比数列前项和公式计算,【详解】由题意,新数列为,所以,,前项和为故选:B.4、D【解析】过点P引抛物线准线的垂线,交准线于D,根据抛物线的定义可知,记,根据题意,当最小,即直线与抛物线相切时满足题意,进而解出此时P的坐标,解得答案即可.【详解】如图,易知点在抛物线C的准线上,作PD垂直于准线,且与准线交于点D,记,则.由抛物线定义可知,.由图可知,当取得最大值时,最小,此时直线与抛物线相切,设切线方程为,代入抛物线方程并化简得:,,方程化为:,代入抛物线方程解得:,即,则,.于是,椭圆的长轴长,半焦距,所以椭圆的离心率.故选:D.5、B【解析】直接利用空间向量基本定理求解即可【详解】因为在平行六面体中,,,,所以,故选:B6、D【解析】根据直线和直线,直线和平面的位置关系依次判断每一个选项得到答案.【详解】若,则平行于过的平面与的交线,当时,,则存在无数条直线,使得,A正确;若,垂直于平面中的所有直线,则存在无数条直线,使得,B正确;若存在无数条直线,使得,,,则,C正确;当时,存在无数条直线,使得,D错误.故选:D.7、A【解析】由倾斜角求出斜率,列方程即可求出m.【详解】因为直线l的倾斜角为,所以斜率.所以,解得:.故选:A8、D【解析】由题意,化简即可得出双曲线的离心率【详解】解:由题意,.故选:D9、C【解析】因为线段D1Q与OP互相平分,所以四点O,Q,P,D1共面,且四边形OQPD1为平行四边形.若P在线段C1D1上时,Q一定在线段ON上运动,只有当P为C1D1的中点时,Q与点M重合,此时λ=1,符合题意若P在线段C1B1与线段B1A1上时,在平面ABCD找不到符合条件Q;在P在线段D1A1上时,点Q在直线OM上运动,只有当P为线段D1A1的中点时,点Q与点M重合,此时λ=0符合题意,所以符合条件的λ值有两个故选C.10、A【解析】根据的方向向量求得斜率.【详解】且是直线的方向向量,.故选:A11、A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题12、B【解析】设出竹子自上而下各节的容积且为等差数列,根据上面4节的容积共3升,下面3节的容积共4升列出关于首项和公差的方程,联立即可求出首项和公差,根据求出的首项和公差,利用等差数列的通项公式即可求出第5节的容积【详解】解:设竹子自上而下各节的容积分别为:,,,,且为等差数列,根据题意得:,,即①,②,②①得:,解得,把代入①得:,则故选:B【点睛】本题考查学生掌握等差数列的性质,灵活运用等差数列的通项公式化简求值,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据成等比数列,可得,再根据的关系可得,然后结合的自身范围解方程即可求出【详解】∵成等比数列,∴,∴,∴,∴,又,∴故答案为:【点睛】本题主要考查椭圆的离心率的计算以及等比数列定义的应用,意在考查学生的数学运算能力,属于基础题14、【解析】对求导,根据题设有且,即可得目标式的值.【详解】由题设,且定义域为,则,所以,整理得,又,所以,两边取对数有,得:,即.故答案为:.15、【解析】根据直观图和平面图的关系可求出,进而利用面积公式可得三角形的面积【详解】由已知可得则故答案为:.16、【解析】利用基本量结合已知列方程组求解即可.【详解】设等差数列的公差为由题可知即因为,所以解得:所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)由题意可得,从而可求出,(2)先构造函数,利用导数可求得对任意恒成立,对任意恒成立,从而将问题转化为只需证对任意恒成立,再次构造函数,利用导数求出其最大值小于等于即可【详解】(1)解:∵函数的图象在点处的切线与平行,∴,解得;证明:(2)由(1)得即对任意恒成立,令,则,∵当时,,∴函数在上单调递增,∵,∴对任意恒成立,即对任意恒成立,∴只需证对任意恒成立即可,即只需证对任意恒成立,令,则,由单调递减,且知,函数在上单调递增,在上单调递减,∴,∴得证,故不等式对任意恒成立18、(1)1(2)证明见解析【解析】(1)根据点在椭圆E上建立方程,结合,然后解出方程即可;(2)联立直线与椭圆的方程,表示出直线与,求得交点的坐标,再分别表示出直线和的斜率并作差,通过韦达定理证明直线和的斜率相等即可.【小问1详解】由点在椭圆E上,得:又,即解得:【小问2详解】依题意,得,且直线l与x轴不会平行设直线l的方程为,,由方程组消去x可得:则有:,且直线的方程为,直线的方程为由方程组可得:设直线的斜率分别是,则有:可得:又可得:故【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系(2)涉及到直线方程时,务必考虑全面,不要忽略直线斜率为或不存在等特殊情形请考生在第22-23题中任选一题作答,如果多做,则按所做的第一题计分19、或3【解析】设出切点,先求和平行且和函数相切的切线,再将切线和联立,求出的值.【详解】设公共切线曲线上的切点坐标为,根据题意,得公共切线的斜率,所以,所以与函数的图像相切的切点坐标为,故可求出公共切线方程为由直线和函数的图像也相切,得方程,即关于x的方程有两个相等的实数根,所以,解得或320、(1);(2).【解析】(1)作出圆台的直观图,过点A作,垂足为H,由勾股定理可求圆台的高;(2)结合(1),利用圆台的体积公式可求圆台的体积【详解】(1)作出圆台的直观图,如图,设圆台上下底面圆心分别为,为圆台的一条母线,连接,,过点A作,垂足为H,则的长等于圆台的高,因为圆台的上下底面半径分别为,母线长为所以,,则,可得,故圆台高为;(2)圆的面积圆的面积为故圆台的体积为21、(1)条件选择见解析,,(2)【解析】(1)设数列的首项为,公差为d,选①由求解;选②由求解;选③由求解;则,由,利用数列通项与前n项和公式求解;(2)易知,再利用错位相减法求解.【小问1详解】解:设数列的首项为,公差为d,选①得,则,选②得,则,选③得,则,所以数列的通项公式为因为,所以当时,,则当时,,则,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度房地产买卖合同标的产权过户与付款方式3篇
- 2024年民营医院全职医生聘用及服务合同一
- 2024年寄卖手表交易合同2篇
- 2024版冷链物流包装袋加工与运输服务合同
- 2024年度广告发布合同涉及媒体平台及广告内容2篇
- 2024版房地产中介公司团队劳动合同规范文本6篇
- 2024年度全新约定条款合同:区块链技术在供应链管理中的应用合同(2024版)3篇
- 箱式炉工安全操作规程模版(2篇)
- 企业经营副总经理安全生产责任制模版(2篇)
- 社区志愿者骨干培训方案(2篇)
- 年产1万吨连续玄武岩纤维及其制品申请建设可行性研究报告
- 专题片创作与赏析智慧树知到期末考试答案2024年
- 《元旦晚会中学生》课件
- 漂流项目规划设计方案
- 贵州医药市场分析及深度研究报告
- HGT 4095-2023 化工用在线气相色谱仪 (正式版)
- 直流输电的基本原理课件
- 2024年口腔科医师工作总结个人述职报告(四篇合集)
- 新人教版五年级小学数学全册奥数(含答案)
- 志愿服务证明(多模板)
- 煤炭加工工艺的智能化控制与自动化技术
评论
0/150
提交评论