




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省师大实验中学2023-2024学年数学高二上期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.2.某校开学“迎新”活动中要把3名男生,2名女生安排在5个岗位,每人安排一个岗位,每个岗位安排一人,其中甲岗位不能安排女生,则安排方法的种数为()A.72 B.56C.48 D.363.执行如图所示的程序框图,则输出S的值是()A. B.C. D.4.如图,是边长为4的等边三角形的中位线,将沿折起,使得点A与P重合,平面平面,则四棱锥外接球的表面积是()A. B.C. D.5.已知,则下列不等式一定成立的是()A B.C. D.6.下列说法或运算正确的是()A.B.用反证法证明“一个三角形至少有两个锐角”时需设“一个三角形没有锐角”C.“,”的否定形式为“,”D.直线不可能与圆相切7.动点到两定点,的距离和是,则动点的轨迹为()A.椭圆 B.双曲线C.线段 D.不能确定8.如图,函数的图象在P点处的切线方程是,若点的横坐标是5,则()A. B.1C.2 D.09.已知正方体的棱长为1,且满足,则的最小值是()A. B.C. D.10.已知函数的图象在点处的切线与直线平行,若数列的前项和为,则的值为()A. B.C. D.11.已知甲、乙、丙三名同学同时独立地解答一道导数试题,每人均有的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,甲解答不正确的概率A. B.C. D.12.函数在的图象大致为()A. B.C D.二、填空题:本题共4小题,每小题5分,共20分。13.在长方体中,M、N分别是BC、的中点,若,则______14.已知向量,若,则实数___________.15.已知直线与双曲线无公共点,则双曲线离心率的取值范围是____16.某次国际会议为了搞好对外宣传工作,会务组选聘了50名记者担任对外翻译工作,在如表“性别与会外语”的列联表中,______.会外语不会外语合计男ab20女6d合计1850三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C对称中心在原点,对称轴为坐标轴,且,两点(1)求椭圆C的方程;(2)设M、N分别为椭圆与x轴负半轴、y轴负半轴的交点,P为椭圆上在第一象限内一点,直线PM与y轴交于点S,直线PN与x轴交于点T,求证:四边形MSTN的面积为定值18.(12分)已知抛物线的准线与轴的交点为.(1)求的方程;(2)若过点的直线与抛物线交于,两点.请判断是否为定值,若是,求出该定值;若不是,请说明理由.19.(12分)为了了解某工厂生产的产品情况,从该工厂生产的产品随机抽取了一个容量为200的样本,测量它们的尺寸(单位:),数据分为,,,,,,七组,其频率分布直方图如图所示.(1)根据频率分布直方图,求200件样本中尺寸在内的样本数;(2)记产品尺寸在内为等品,每件可获利6元;产品尺寸在内为不合格品,每件亏损3元;其余的为合格品,每件可获利4元.若该机器一个月共生产2000件产品.以样本的频率代替总体在各组的频率,若单月利润未能达到9000元,则需要对该工厂设备实施升级改造.试判断是否需要对该工厂设备实施升级改造.20.(12分)已知椭圆的左、右焦点分别为,且,直线过与交于两点,的周长为8(1)求的方程;(2)过作直线交于两点,且向量与方向相同,求四边形面积的取值范围21.(12分)已知三角形的内角所对的边分别为,且C为钝角.(1)求cosA;(2)若,,求三角形的面积.22.(10分)已如空间直角标系中,点都在平面内,求实数y的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.2、A【解析】以位置优先法去安排即可解决.【详解】第一步:安排甲岗位,由3名男生中任选1人,有3种方法;第二步:安排余下的4个岗位,由2名女生和余下的2名男生任意安排即可,有种方法故安排方法的种数为故选:A3、C【解析】按照程序框图的流程进行计算.【详解】,故输出S的值为.故选:C4、A【解析】分别取的中点,易得,则点为四边形的外接圆的圆心,则四棱锥外接球的球心在过点且垂直平面的直线上,设球心为,设外接球的半径为,,利用勾股定理求得半径,从而可得出答案.【详解】解:分别取的中点,在等边三角形中,,是中位线,则都是等边三角形,所以,所以点为四边形的外接圆的圆心,则四棱锥外接球的球心在过点且垂直平面的直线上,设球心为,由为的中点,所以,因为平面平面,且平面平面,平面,所以平面,则,设外接球半径为,,,则,,所以,解得,所以,所以四棱锥外接球的表面积是.故选:A.第II卷5、B【解析】运用不等式的性质及举反例的方法可求解.【详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B6、D【解析】对于A:可以解决;对于B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”;对于C:全称否定必须是全部否定;对于D:需要观察出所给直线是过定点的.【详解】A:,故错误;B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”,所以用反证法时应假设只有一个锐角和没有锐角两种情况,故错误;C:的否定形式是,故错误;D:直线是过定点(-1,0),而圆,圆心为(2,0),半径为4,定点(-1,0)到圆心的距离为2-(-1)=3<4,故定点在圆内,故正确;故选:D.7、A【解析】根据椭圆的定义,即可得答案.【详解】由题意可得,根据椭圆定义可得,P点的轨迹为椭圆,故选:A8、C【解析】函数的图象在点P处的切线方程是,所以,在P处的导数值为切线的斜率,2,故选C考点:本题主要考查导数的几何意义点评:简单题,切线的斜率等于函数在切点的导函数值9、C【解析】由空间向量共面定理可得点四点共面,从而将求的最小值转化为求点到平面的距离,再根据等体积法计算.【详解】因为,由空间向量的共面定理可知,点四点共面,即点在平面上,所以的最小值为点到平面的距离,由正方体棱长为,可得是边长为的等边三角形,则,,由等体积法得,,所以,所以的最小值为.故选:C【点睛】共面定理的应用:设是不共面的四点,则对空间任意一点,都存在唯一的有序实数组使得,说明:若,则四点共面.10、A【解析】函数的图象在点处的切线与直线平行,利用导函数的几何含义可以求出,转化求解数列的通项公式,进而由数列的通项公式,利用裂项相消法求和即可【详解】解:∵函数的图象在点处的切线与直线平行,由求导得:,由导函数得几何含义得:,可得,∴,所以,∴数列的通项为,所以数列的前项的和即为,则利用裂项相消法可以得到:所以数列的前2021项的和为:.故选:A.11、C【解析】记“三人中至少有两人解答正确”为事件;“甲解答不正确”为事件,利用二项分布的知识计算出,再计算出,结合条件概率公式求得结果.【详解】记“三人中至少有两人解答正确”为事件;“甲解答不正确”为事件则;本题正确选项:【点睛】本题考查条件概率的求解问题,涉及到利用二项分布公式求解概率的问题.12、D【解析】函数|在[–2,2]上是偶函数,其图象关于轴对称,因为,所以排除选项;当时,有一零点,设为,当时,为减函数,当时,为增函数故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、-2【解析】作出图像,根据几何关系,结合空间向量的加减法运算法则即可求解.【详解】,∴,,,故答案为:-2.14、2【解析】利用向量平行的条件直接解出.【详解】因为向量,且,所以,解得:2故答案为:215、【解析】联立直线得,由无公共点得,进而得,即可求出离心率的取值范围.【详解】联立直线与双曲线可得,整理得,显然,由方程无解可得,即,则,,又离心率大于1,故离心率的取值范围是.故答案为:.16、24【解析】根据题意列方程组求解即可【详解】由题意得所以,,.故答案为:24三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)设椭圆方程为,利用待定系数法求得的值,即可得出答案;(2)设,,,易得,分别求出直线PM和直线PN的方程,从而可求出的坐标,再根据即可得出答案.【小问1详解】解:依题意设椭圆方程为,将,代入得,解得得,,∴所求椭圆方程为;【小问2详解】证明:设,,,,P点坐标满足,即,直线PM:,可得,直线PN:,可得,.18、(1)(2)是定值,定值为【解析】(1)由抛物线的准线求标准方程;(2)直线与抛物线相交求定值,解联立方程消未知数,利用韦达定理,求线段长,再求它们的倒数的平方和.【小问1详解】由题意,可得,即,故抛物线的方程为.【小问2详解】为定值,且定值是.下面给出证明.证明:设直线的方程为,,,联立抛物线有,消去得,则,又,.得因此为定值,且定值是.19、(1)件;(2)需要对该工厂设备实施升级改造.【解析】(1)根据评论分布直方图面积之和为1列等式计算得,用200乘以内频率即可得出答案;(2)根据题意计算等品件,不合格品有件,进而得合格品有件,根据题意计算其利润与9000比较判定需要对该工厂设备实施升级改造.【详解】解:(1)因为,解得,所以200件样本中尺寸在内的样本数为(件).(2)由题意可得,这批产品中优等品有件,这批产品中不合格品有件,这批产品中合格品有件,元.所以该工厂生产的产品一个月所获得的利润为8960元,因为,所以需要对该工厂设备实施升级改造.【点睛】频率分布直方图中的常见结论(1)众数的估计值为最高矩形的中点对应的横坐标;(2)平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和;(3)中位数的估计值的左边和右边的小矩形的面积和是相等的.20、(1);(2).【解析】(1)根据给定条件直接求出半焦距,及长半轴长即可作答.(2)根据给定条件结合椭圆的对称性可得四边形为平行四边形,设出直线l的方程,与椭圆C的方程联立,借助韦达定理、对勾函数性质计算作答.【小问1详解】依题意,椭圆半焦距,由椭圆定义知,的周长,解得,,因此椭圆的方程为.【小问2详解】依题意,直线的斜率不为0,设直线的方程为,,由消去并整理得:,则,,因与方向相同,即,又椭圆是以原点O为对称中心的中心对称图形,于是得,即四边形为平行四边形,其面积,则,令,则,则,显然在上单调递增,则当时,,即,从而可得,所以四边形面积的取值范围为.【点睛】结论点睛:过定点的直线l:y=kx+b交圆锥曲线于点,,则面积;过定点直线l:x=ty+a交圆锥曲线于点,,则面积21、(1)(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产品度合同范例
- 单位租凭员工车辆合同范本
- 中粮销售合同范本
- 化工散水出售合同范本
- seb采购合同范本
- 华为销售合同范本
- 农业采购合同范本格式
- 伐树施工合同范本
- 代理业主房屋合同范本
- 写作委托协议合同范本
- 地理-天一大联考2025届高三四省联考(陕晋青宁)试题和解析
- 小巴掌童话课件
- 教科版六年级科学下册全册教学设计教案
- 部编版小学五年级下册《道德与法治》全册教案含教学计划
- 初中数学新课程标准(2024年版)
- GB/T 19342-2024手动牙刷一般要求和检测方法
- 2024年山东铁投集团招聘笔试参考题库含答案解析
- 8款-组织架构图(可编辑)
- 中学生班干部培训方案(共4页)
- 净土资粮——信愿行(11)第六讲净业三福变化气质
- 美的集团公司分权手册
评论
0/150
提交评论