专题15力学综合计算题(原卷版)_第1页
专题15力学综合计算题(原卷版)_第2页
专题15力学综合计算题(原卷版)_第3页
专题15力学综合计算题(原卷版)_第4页
专题15力学综合计算题(原卷版)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题15力学综合计算题知识梳理考点一动力学方法分析多运动过程问题1.基本思路(1)将“多过程”分解为许多“子过程”,各“子过程”间由“衔接点”连接.(2)对各“衔接点”进行受力分析和运动分析,必要时画出受力图和过程示意图.(3)根据“子过程”“衔接点”的模型特点选择合适的物理规律列方程.(4)分析“衔接点”速度、加速度等的关联,确定各段间的时间关联,并列出相关的辅助方程.(5)联立方程组,分析求解,对结果进行必要的验证或讨论.2.解题关键(1)注意应用v-t图象和情景示意图帮助分析运动过程.(2)抓住两个分析:准确受力分析和运动过程分析.例一(2021·河南郑州市模拟)某次新能汽车性能测试中,如图甲显示的是牵引力传感器传回的实时数据随时间变化的关系,但由于机械故障,速度传感器只传回了第25s以后的数据,如图乙所示.已知汽车质量为1500kg,若测试平台是水平的,且汽车由静止开始做直线运动,设汽车所受阻力恒定.求:(1)18s末汽车的速度是多少?(2)前25s内的汽车的位移是多少?【答案】(1)26m/s(2)608m【解析】(1)0~6s内由牛顿第二定律得:F1-Ff=ma16s末车速为:v1=a1t1在6~18s内,由牛顿第二定律得:F2-Ff=ma2第18s末车速为:v2=v1+a2t2由题图知18s后汽车匀速直线运动,牵引力等于阻力,故有:Ff=F=1500N,解得:v1=30m/s,v2=26m/s;(2)汽车在0~6s内的位移为:x1=eq\f(v1,2)t1=90m,汽车在6~18s内的位移为:x2=eq\f(v1+v2,2)t2=336m,汽车在18~25s内的位移为:x3=v2t3=182m故汽车在前25s内的位移为:x=x1+x2+x3=608m.考点二传送带模型问题1.设问的角度(1)动力学角度:首先要正确分析物体的运动过程,做好受力分析,然后利用运动学公式结合牛顿第二定律求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系.(2)能量角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解.2.功能关系分析(1)功能关系分析:W=ΔEk+ΔEp+Q.(2)对W和Q的理解:①传送带克服摩擦力做的功:W=Ffx传;②产生的内能:Q=Ffx相对.例一(2020·福建福州市质检)如图所示,水平传送带匀速运行速度为v=2m/s,传送带两端A、B间距离为x0=10m,当质量为m=5kg的行李箱无初速度地放上传送带A端后,传送到B端,传送带与行李箱间的动摩擦因数μ=,重力加速度g取10m/s2,求:(1)行李箱开始运动时的加速度大小a;(2)行李箱从A端传送到B端所用时间t;(3)整个过程行李箱对传送带的摩擦力做功W.【答案】(1)2m/s2(2)5.5s(3)-20J【解析】(1)行李箱刚放上传送带时的加速度大小:a=eq\f(Ff,m)=eq\f(μmg,m)=μg=2m/s2(2)经过t1时间二者共速,t1=eq\f(v,a)=eq\f(2,2)s=1s行李箱匀加速运动的位移为:x1=eq\f(1,2)at12=eq\f(1,2)×2×12m=1m行李箱随传送带匀速运动的时间:t2=eq\f(x0-x1,v)=eq\f(10-1,2)s=4.5s则行李箱从A传送到B所用时间:t=t1+t2=1s+4.5s=5.5s(3)t1时间内传送带的位移:x2=vt1=2×1m=2m根据牛顿第三定律,传送带受到行李箱的摩擦力Ff′=Ff行李箱对传送带的摩擦力做功:W=-Ff′x2=-μmgx2=-0.2×5×10×2J=-20J考点三应用动能定理解决多过程运动问题1.分析思路(1)受力与运动分析:根据物体的运动过程分析物体的受力情况,以及不同运动过程中力的变化情况;(2)做功分析:根据各种力做功的不同特点,分析各种力在不同的运动过程中的做功情况;(3)功能关系分析:运用动能定理、机械能守恒定律或能量守恒定律进行分析,选择合适的规律求解.2.方法技巧(1)“合”——整体上把握全过程,构建大致的运动图景;(2)“分”——将全过程进行分解,分析每个子过程对应的基本规律;(3)“合”——找出各子过程之间的联系,以衔接点为突破口,寻求解题最优方案.例一.(2021·湖南卷)如图,竖直平面内一足够长的光滑倾斜轨道与一长为的水平轨道通过一小段光滑圆弧平滑连接,水平轨道右下方有一段弧形轨道。质量为的小物块A与水平轨道间的动摩擦因数为。以水平轨道末端点为坐标原点建立平面直角坐标系,轴的正方向水平向右,轴的正方向竖直向下,弧形轨道端坐标为,端在轴上。重力加速度为。(1)若A从倾斜轨道上距轴高度为的位置由静止开始下滑,求经过点时的速度大小;(2)若A从倾斜轨道上不同位置由静止开始下滑,经过点落在弧形轨道上的动能均相同,求的曲线方程;(3)将质量为(为常数且)的小物块置于点,A沿倾斜轨道由静止开始下滑,与B发生弹性碰撞(碰撞时间极短),要使A和B均能落在弧形轨道上,且A落在B落点的右侧,求A下滑的初始位置距轴高度的取值范围。【答案】(1);(2)(其中,);(3)【解析】(1)物块从光滑轨道滑至点,根据动能定理:解得:(2)物块从点飞出后做平抛运动,设飞出的初速度为,落在弧形轨道上的坐标为,将平抛运动分别分解到水平方向的匀速直线运动和竖直方向的自由落体运动,有,解得水平初速度为:物块从点到落点,根据动能定理可知:解得落点处动能为:因为物块从点到弧形轨道上动能均相同,将落点的坐标代入,可得化简可得:即:(其中,)(3)物块在倾斜轨道上从距轴高处静止滑下,到达点与物块碰前,其速度为,根据动能定理可知:解得:①物块与发生弹性碰撞,使A和B均能落在弧形轨道上,且A落在B落点的右侧,则A与B碰撞后需要反弹后再经过水平轨道倾斜轨道水平轨道再次到达O点。规定水平向右为正方向,碰后AB的速度大小分别为和,在物块与碰撞过程中,动量守恒,能量守恒。则:解得:②③设碰后物块反弹,再次到达点时速度为,根据动能定理可知解得:④据题意,A落在B落点的右侧,则:⑤据题意,A和B均能落在弧形轨道上,则A必须落在P点的左侧,即:⑥联立以上,可得的取值范围为:考点四应用动力学观点求解弹簧类问题1.由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力(除重力外)和除弹簧弹力以外的内力不做功,系统机械能守恒.2.弹簧两端物体把弹簧拉伸至最长(或压缩至最短)时,两端的物体具有相同的速度,弹性势能最大.3.如果系统每个物体除弹簧弹力外所受合力为零,当弹簧为自然长度时,系统内弹簧某一端的物体具有最大速度(如绷紧的弹簧由静止释放).例一.(2021·山东卷)如图所示,三个质量均为m的小物块A、B、C,放置在水平地面上,A紧靠竖直墙壁,一劲度系数为k的轻弹簧将A、B连接,C紧靠B,开始时弹簧处于原长,A、B、C均静止。现给C施加一水平向左、大小为F的恒力,使B、C一起向左运动,当速度为零时,立即撤去恒力,一段时间后A离开墙壁,最终三物块都停止运动。已知A、B、C与地面间的滑动摩擦力大小均为f,最大静摩擦力等于滑动摩擦力,弹簧始终在弹性限度内。(弹簧的弹性势能可表示为:,k为弹簧的劲度系数,x为弹簧的形变量)(1)求B、C向左移动的最大距离和B、C分离时B的动能;(2)为保证A能离开墙壁,求恒力的最小值;(3)若三物块都停止时B、C间的距离为,从B、C分离到B停止运动的整个过程,B克服弹簧弹力做的功为W,通过推导比较W与的大小;(4)若,请在所给坐标系中,画出C向右运动过程中加速度a随位移x变化的图像,并在坐标轴上标出开始运动和停止运动时的a、x值(用f、k、m表示),不要求推导过程。以撤去F时C的位置为坐标原点,水平向右为正方向。【答案】(1)、;(2);(3);(4)见解析【解析】(1)从开始到B、C向左移动到最大距离的过程中,以B、C和弹簧为研究对象,由功能关系得:弹簧恢复原长时B、C分离,从弹簧最短到B、C分离,以B、C和弹簧为研究对象,由能量守恒得:联立方程解得:(2)当A刚要离开墙时,设弹簧得伸长量为,以A为研究对象,由平衡条件得若A刚要离开墙壁时B得速度恰好等于零,这种情况下恒力为最小值,从弹簧恢复原长到A刚要离开墙得过程中,以B和弹簧为研究对象,由能量守恒得:结合第(1)问结果可知:根据题意舍去,所以恒力得最小值为:(3)从B、C分离到B停止运动,设B的路程为,C的位移为,以B为研究对象,由动能定理得:以C为研究对象,由动能定理得:由B、C得运动关系得:联立可知:(4)小物块B、C向左运动过程中,由动能定理得:解得撤去恒力瞬间弹簧弹力为:则坐标原点的加速度为:之后C开始向右运动过程(B、C系统未脱离弹簧)加速度为:可知加速度随位移为线性关系,随着弹簧逐渐恢复原长,减小,减小,弹簧恢复原长时,B和C分离,之后C只受地面的滑动摩擦力,加速度为:负号表示C的加速度方向水平向左;从撤去恒力之后到弹簧恢复原长,以B、C为研究对象,由动能定理得:脱离弹簧瞬间后C速度为,之后C受到滑动摩擦力减速至0,由能量守恒得:解得脱离弹簧后,C运动的距离为:则C最后停止的位移为:所以C向右运动的图象为:考点五 动量观点和能量观点的综合应用1.动量的观点和能量的观点(1)动量的观点:动量定理、动量守恒定律.(2)能量的观点:动能定理、机械能守恒定律和能量守恒定律.这两个观点都不对过程变化的细节做深入的研究,而关心运动状态变化的结果及引起变化的原因.简单地说,只要求知道过程的始末状态动量、动能、力在过程中的冲量和所做的功,即可对问题求解.2.解题策略(1)弄清有几个物体参与运动,并划分清楚物体的运动过程.(2)进行正确的受力分析,明确各过程的运动特点.(3)在光滑的平面或曲面上的运动,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析.(4)如含摩擦生热问题,则考虑用能量守恒定律分析.例一.(2021·浙江卷)如图所示,竖直平面内由倾角α=60°的斜面轨道AB、半径均为R的半圆形细圆管轨道BCDE和圆周细圆管轨道EFG构成一游戏装置固定于地面,B、E两处轨道平滑连接,轨道所在平面与竖直墙面垂直。轨道出口处G和圆心O2的连线,以及O2、E、O1和B等四点连成的直线与水平线间的夹角均为θ=30°,G点与竖直墙面的距离。现将质量为m的小球从斜面的某高度h处静止释放。小球只有与竖直墙面间的碰撞可视为弹性碰撞,不计小球大小和所受阻力。(1)若释放处高度h=h0,当小球第一次运动到圆管最低点C时,求速度大小vc及在此过程中所受合力的冲量的大小和方向;(2)求小球在圆管内与圆心O1点等高的D点所受弹力FN与h的关系式;(3)若小球释放后能从原路返回到出发点,高度h应该满足什么条件?【答案】(1),,水平向左;(2)(h≥R);(3)或【解析】(1)机械能守恒:解得:动量定理:方向水平向左(2)机械能守恒:牛顿第二定律:解得:满足的条件(3)第1种情况:不滑离轨道原路返回,条件是第2种情况:与墙面垂直碰撞后原路返回,在进入G之前是平抛运动:其中,,则:得:机械能守恒:h满足的条件:能力训练1.(2021•山东济南一模)2022年冬奥会将在北京举行,届时会有许多精彩刺激的比赛,单板高山滑雪U形池就是其中之一。它的场地是长约120米,深为米,宽15米的U形滑道(两边竖直雪道与池底雪道由圆弧雪道连接组成,横截面像U字形状),整条赛道的平均坡度18°.选手在高处助滑后从U形池一侧边缘(示意图中A点)进入赛道,沿U型池滑行至另一侧竖直轨道,从B点跃起在空中做出各种抓板旋转等动作,完成动作落入轨道再滑向对侧,如此反复跃起完成难度不同的动作,直至滑出赛道完成比赛,裁判根据选手完成动作的难易和效果打分。(1)选手出发时要先经过一段倾斜坡道助滑(如情景图),设坡度倾角为α,滑板与雪面的动摩擦因数为μ,当地的重力加速度为g,求选手沿此斜面坡道向下滑行的加速度大小。(2)在高中物理学习中,对于复杂的运动往往采用分解的研究方法,比如对平抛运动的研究。a.运动员沿U形池从A滑行到B的过程是一个复杂的运动,请你用分解的方法来研究这个运动,并描述你的分解结果。b..在平昌冬奥会上,传奇名将肖恩•怀特在赛道边缘跃起时以外转1440°(以身体为轴外转四周)超高难度的动作夺得该项目的冠军,为了简化以达到对特定问题的求解,此过程中他可视为质点,设每转一周最小用时秒,他起跳时速度与竖直赛道在同一平面内,与竖直向上的夹角为20°,下落到与起跳点同一高度前要完成全部动作,全过程忽略空气阻力,求他起跳的最小速度为多少?(g取10m/s2sin20°=0.34cos20°=)2.汽车A在水平冰雪路面上行驶.驾驶员发现其正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B.两车碰撞时和两车都完全停止后的位置如图2所示,碰撞后B车向前滑动了4.5m,A车向前滑动了2.0m.已知A和B的质量分别为2.0×103kg和1.5×103kg,两车与该冰雪路面间的动摩擦因数均为,两车碰撞时间极短,在碰撞后车轮均没有滚动,重力加速度大小g=10m/s2.求:图2(1)碰撞后的瞬间B车速度的大小;(2)碰撞前的瞬间A车速度的大小.3、(2021·北京市昌平区高三下学期5月二模)高铁、动车车厢与货物车厢之间对接,其原理可简化为一维碰撞模型。如图所示,两车厢质量均为m,左边车厢与其地板上质量为m的货箱共同向右以v0运动,另一车厢以2v0从相反方向向左运动并与左车厢碰撞挂钩成为一体,货箱在地板上滑行的最大距离为L。不计车厢与铁轨间的摩擦,重力加速度为g。求:(1)两车厢碰撞后瞬间,车厢速度的大小和方向;(2)车厢在挂钩后走过的距离L';(3)货箱与车厢地板间的摩擦因数μ。4、(2021·广东省普宁二中适应性考试)如图所示,一个空中运动接力轨道竖直放置。倾斜光滑直轨道与光滑圆弧轨道在B点相切,竖直,C是圆的最高点,另一光滑圆弧轨道的圆心为是圆的最低点,两点在同一水平高度,,并与顺时针转动的水平传送带平滑连接。已知长为l,与水平方向的夹角。质量为m的物块a,以初速度从A点开始沿轨道运动,已知。物块a运动到C点后水平抛出,恰好无碰撞进入圆弧轨道内侧继续运动,到F点与另一静止的物块b发生弹性碰撞,物块b质量为,碰撞后,物块b通过传送带到达A点。两物块均可看成质点,两物块与传送带之间的动摩擦因数,不计空气阻力和所有轨道的摩擦,已知重力加速度为。(1)求物块a在C点时对轨道的压力大小;(2)求物块碰撞后瞬间,物块b的速度大小;(3)若物块b通过传送带后到达A点的速度也是,求传送带长度L的取值范围。5、(2021·河北省实验中学高三下学期调研)如图所示,可视为质点的三个物块质量分别为,三物块间有两根轻质弹簧,其原长均为,劲度系数分别为的两端与物块连接,的两端与物块只接触不连接,被压缩一段距离后,分别由质量忽略不计的硬质连杆锁定,此时的长度为,整个装置竖直置于水平地面上,重力加速度为,不计空气阻力。(1)现解除对的锁定,若当到达最高点时,对地面压力恰为零,求此时距地面的高度;(2)第(1)问的基础上,在到达最高点瞬间,解除与的连接并撤走与,同时解除对的锁定。设恢复形变时间极短,此过程中弹力冲量远大于重力冲量,且忽略系统重力势能的变化,求上升过程中的最大速度的大小和自解锁瞬间至恢复原长时上升的高度h。(理论表明弹簧的弹性势能可以表示为,其中,为弹簧的劲度系数,为弹簧的形变量);6.雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关。雨滴间无相互作用且雨滴质量不变,重力加速度为g。(1)质量为m的雨滴由静止开始,下落高度h时速度为u,求这一过程中克服空气阻力所做的功W;(2)将雨滴看作半径为r的球体,设其竖直落向地面的过程中所受空气阻力f=kr2v2,其中v是雨滴的速度,k是比例系数;a.设雨滴的密度为ρ,推导雨滴下落趋近的最大速度vm与半径r的关系式;b.示意图中画出了半径为r1、r2(r1>r2)的雨滴在空气中无初速下落的v—t图线,其中_____对应半径为r1的雨滴(选填①、②);若不计空气阻力,请在图中画出雨滴无初速下落的v—t图线。(3)由于大量气体分子在各方向运动的几率相等,其对静止雨滴的作用力为零。将雨滴简化为垂直于运动方向面积为S的圆盘,证明:圆盘以速度v下落时受到的空气阻力f∝v2(提示:设单位体积内空气分子数为n,空气分子质量为m0)。7.一质量为m=2000kg的汽车以某一速度在平直公路上匀速行驶.行驶过程中,司机忽然发现前方100m处有一警示牌.立即刹车.刹车过程中,汽车所受阻力大小随时间变化可简化为图(a)中的图线.图(a)中,0~t1时间段为从司机发现警示牌到采取措施的反应时间(这段时间内汽车所受阻力已忽略,汽车仍保持匀速行驶

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论