数学多选题专项训练试题及解析_第1页
数学多选题专项训练试题及解析_第2页
数学多选题专项训练试题及解析_第3页
数学多选题专项训练试题及解析_第4页
数学多选题专项训练试题及解析_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、数列多选题1.已知数列的前n项和为,且满足,则下列说法正确的是()A.数列的前n项和为 B.数列的通项公式为C.数列为递增数列 D.数列为递增数列答案:AD【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得.【详解】因此数列为以为首项,为公差的等差数列,也是递增数列,即D正确;解析:AD【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得.【详解】因此数列为以为首项,为公差的等差数列,也是递增数列,即D正确;所以,即A正确;当时所以,即B,C不正确;故选:AD【点睛】本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.2.已知数列是等差数列,前n项和为且下列结论中正确的是()A.最小 B. C. D.答案:BCD【分析】由是等差数列及,求出与的关系,结合等差数列的通项公式及求和公式即可进行判断.【详解】设等差数列数列的公差为.由有,即所以,则选项D正确.选项A.,无法判断其是否有最小解析:BCD【分析】由是等差数列及,求出与的关系,结合等差数列的通项公式及求和公式即可进行判断.【详解】设等差数列数列的公差为.由有,即所以,则选项D正确.选项A.,无法判断其是否有最小值,故A错误.选项B.,故B正确.选项C.,所以,故C正确.故选:BCD【点睛】关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件得到,即,然后由等差数列的性质和前项和公式判断,属于中档题.3.等差数列的前项和为,,则下列结论一定正确的是()A. B. C.当或时,取得最大值 D.答案:ABD【分析】由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论.【详解】∵等差数列的前项和为,,∴,解得,故,故A正确;∵,,故有,故B正确;该数解析:ABD【分析】由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论.【详解】∵等差数列的前项和为,,∴,解得,故,故A正确;∵,,故有,故B正确;该数列的前项和,它的最值,还跟的值有关,故C错误;由于,,故,故D正确,故选:ABD.【点睛】思路点睛:利用等差数列的通项公式以及前项和公式进行化简,直接根据性质判断结果.4.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是()A.4 B.5 C.7 D.8答案:BD【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为,公差即每一层比上一层多的根数为,设一共放层,利用等差数列求和公式,分析即可得解.【详解】依据题意,根数从上至下构成等差解析:BD【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为,公差即每一层比上一层多的根数为,设一共放层,利用等差数列求和公式,分析即可得解.【详解】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为,公差为,设一共放层,则总得根数为:整理得,因为,所以为200的因数,且为偶数,验证可知满足题意.故选:BD.【点睛】关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题.5.无穷等差数列的前n项和为Sn,若a1>0,d<0,则下列结论正确的是()A.数列单调递减 B.数列有最大值C.数列单调递减 D.数列有最大值答案:ABD【分析】由可判断AB,再由a1>0,d<0,可知等差数列数列先正后负,可判断CD.【详解】根据等差数列定义可得,所以数列单调递减,A正确;由数列单调递减,可知数列有最大值a1,故B正解析:ABD【分析】由可判断AB,再由a1>0,d<0,可知等差数列数列先正后负,可判断CD.【详解】根据等差数列定义可得,所以数列单调递减,A正确;由数列单调递减,可知数列有最大值a1,故B正确;由a1>0,d<0,可知等差数列数列先正后负,所以数列先增再减,有最大值,C不正确,D正确.故选:ABD.6.等差数列的前n项和记为,若,,则()A. B.C. D.当且仅当时,答案:AB【分析】根据等差数列的性质及可分析出结果.【详解】因为等差数列中,所以,又,所以,所以,,故AB正确,C错误;因为,故D错误,故选:AB【点睛】关键点睛:本题突破口在于由解析:AB【分析】根据等差数列的性质及可分析出结果.【详解】因为等差数列中,所以,又,所以,所以,,故AB正确,C错误;因为,故D错误,故选:AB【点睛】关键点睛:本题突破口在于由得到,结合,进而得到,考查学生逻辑推理能力.7.等差数列中,为其前项和,,则以下正确的是()A.B.C.的最大值为D.使得的最大整数答案:BCD【分析】设等差数列的公差为,由等差数列的通项公式及前n项和公式可得,再逐项判断即可得解.【详解】设等差数列的公差为,由题意,,所以,故A错误;所以,所以,故B正确;因为,所以当解析:BCD【分析】设等差数列的公差为,由等差数列的通项公式及前n项和公式可得,再逐项判断即可得解.【详解】设等差数列的公差为,由题意,,所以,故A错误;所以,所以,故B正确;因为,所以当且仅当时,取最大值,故C正确;要使,则且,所以使得的最大整数,故D正确.故选:BCD.8.设是等差数列,是其前项和,且,则下列结论正确的是()A. B.C. D.的最大值答案:ABD【分析】由,判断,再依次判断选项.【详解】因为,,,所以数列是递减数列,故,AB正确;,所以,故C不正确;由以上可知数列是单调递减数列,因为可知,的最大值,故D正确.故选:AB解析:ABD【分析】由,判断,再依次判断选项.【详解】因为,,,所以数列是递减数列,故,AB正确;,所以,故C不正确;由以上可知数列是单调递减数列,因为可知,的最大值,故D正确.故选:ABD【点睛】本题考查等差数列的前项和的最值,重点考查等差数列的性质,属于基础题型.9.设等差数列的前项和为,公差为.已知,,则()A. B.数列是递增数列C.时,的最小值为13 D.数列中最小项为第7项答案:ACD【分析】由已知得,又,所以,可判断A;由已知得出,且,得出时,,时,,又,可得出在上单调递增,在上单调递增,可判断B;由,可判断C;判断,的符号,的单调性可判断D;【详解】由已知解析:ACD【分析】由已知得,又,所以,可判断A;由已知得出,且,得出时,,时,,又,可得出在上单调递增,在上单调递增,可判断B;由,可判断C;判断,的符号,的单调性可判断D;【详解】由已知得,,又,所以,故A正确;由,解得,又,当时,,时,,又,所以时,,时,,所以在上单调递增,在上单调递增,所以数列不是递增数列,故B不正确;由于,而,所以时,的最小值为13,故C选项正确;当时,,时,,当时,,时,,所以当时,,,,时,为递增数列,为正数且为递减数列,所以数列中最小项为第7项,故D正确;【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.10.首项为正数,公差不为0的等差数列,其前项和为,现有下列4个命题中正确的有()A.若,则;B.若,则使的最大的n为15C.若,,则中最大D.若,则答案:BC【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案.【详解】A选项,若,则,那么.故A不正确;B选项,若,则,又因为,所以前8项为正,从第9项开始为负,因为解析:BC【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案.【详解】A选项,若,则,那么.故A不正确;B选项,若,则,又因为,所以前8项为正,从第9项开始为负,因为,所以使的最大的为15.故B正确;C选项,若,,则,,则中最大.故C正确;D选项,若,则,而,不能判断正负情况.故D不正确.故选:BC.【点睛】本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型.11.已知数列满足:,当时,,则关于数列说法正确的是()A. B.数列为递增数列C.数列为周期数列 D.答案:ABD【分析】由已知递推式可得数列是首项为,公差为1的等差数列,结合选项可得结果.【详解】得,∴,即数列是首项为,公差为1的等差数列,∴,∴,得,由二次函数的性质得数列为递增数列,解析:ABD【分析】由已知递推式可得数列是首项为,公差为1的等差数列,结合选项可得结果.【详解】得,∴,即数列是首项为,公差为1的等差数列,∴,∴,得,由二次函数的性质得数列为递增数列,所以易知ABD正确,故选:ABD.【点睛】本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.12.等差数列的前项和为,,则下列结论一定正确的是()A. B.当或10时,取最大值C. D.答案:AD【分析】由求出,即,由此表示出、、、,可判断C、D两选项;当时,,有最小值,故B错误.【详解】解:,,故正确A.由,当时,,有最小值,故B错误.,所以,故C错误.,,故D正确.解析:AD【分析】由求出,即,由此表示出、、、,可判断C、D两选项;当时,,有最小值,故B错误.【详解】解:,,故正确A.由,当时,,有最小值,故B错误.,所以,故C错误.,,故D正确.故选:AD【点睛】考查等差数列的有关量的计算以及性质,基础题.二、等差数列多选题13.设数列的前项和为,关于数列,下列四个命题中正确的是()A.若,则既是等差数列又是等比数列B.若(,为常数,),则是等差数列C.若,则是等比数列D.若是等差数列,则,,也成等差数列解析:BCD【分析】利用等差等比数列的定义及性质对选项判断得解.【详解】选项A:,得是等差数列,当时不是等比数列,故错;选项B:,,得是等差数列,故对;选项C:,,当时也成立,是等比数列,故对;选项D:是等差数列,由等差数列性质得,,是等差数列,故对;故选:BCD【点睛】熟练运用等差数列的定义、性质、前项和公式是解题关键.14.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为an(n∈N*),数列{an}满足a1=a2=1,an=an-1+an-2(n≥3).再将扇形面积设为bn(n∈N*),则()A.4(b2020-b2019)=πa2018·a2021 B.a1+a2+a3+…+a2019=a2021-1C.a12+a22+a32…+(a2020)2=2a2019·a2021 D.a2019·a2021-(a2020)2+a2018·a2020-(a2019)2=0解析:ABD【分析】对于A,由题意得bn=an2,然后化简4(b2020-b2019)可得结果;对于B,利用累加法求解即可;对于C,数列{an}满足a1=a2=1,an=an-1+an-2(n≥3),即an-1=an-2-an,两边同乘an-1,可得an-12=an-1an-2-an-1an,然后累加求解;对于D,由题意an-1=an-an-2,则a2019·a2021-(a2020)2+a2018·a2020-(a2019)2,化简可得结果【详解】由题意得bn=an2,则4(b2020-b2019)=4(a20202-a20192)=π(a2020+a2019)(a2020-a2019)=πa2018·a2021,则选项A正确;又数列{an}满足a1=a2=1,an=an-1+an-2(n≥3),所以an-2=an-an-1(n≥3),a1+a2+a3+…+a2019=(a3-a2)+(a4-a3)+(a5-a4)+…+(a2021-a2020)=a2021-a2=a2021-1,则选项B正确;数列{an}满足a1=a2=1,an=an-1+an-2(n≥3),即an-1=an-2-an,两边同乘an-1,可得an-12=an-1an-2-an-1an,则a12+a22+a32…+(a2020)2=a12+(a2a1-a2a3)+(a3a2-a3a4)+…+(a2020a2019-a2020a2021)=a12-a2020a2021=1-a2020a2021,则选项C错误;由题意an-1=an-an-2,则a2019·a2021-(a2020)2+a2018·a2020-(a2019)2=a2019·(a2021-a2019)+a2020·(a2018-a2020)=a2019·a2020+a2020·(-a2019)=0,则选项D正确;故选:ABD.【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题15.若不等式对于任意正整数n恒成立,则实数a的可能取值为()A. B. C.1 D.2解析:ABC【分析】根据不等式对于任意正整数n恒成立,即当n为奇数时有恒成立,当n为偶数时有恒成立,分别计算,即可得解.【详解】根据不等式对于任意正整数n恒成立,当n为奇数时有:恒成立,由递减,且,所以,即,当n为偶数时有:恒成立,由第增,且,所以,综上可得:,故选:ABC.【点睛】本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题.16.(多选题)已知数列中,前n项和为,且,则的值不可能为()A.2 B.5 C.3 D.4解析:BD【分析】利用递推关系可得,再利用数列的单调性即可得出答案.【详解】解:∵,∴时,,化为:,由于数列单调递减,可得:时,取得最大值2.∴的最大值为3.故选:BD.【点睛】本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.17.已知数列满足,,则下列各数是的项的有()A. B. C. D.解析:BD【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论.【详解】因为数列满足,,;;;数列是周期为3的数列,且前3项为,,3;故选:.【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.18.首项为正数,公差不为0的等差数列,其前项和为,则下列4个命题中正确的有()A.若,则,;B.若,则使的最大的n为15;C.若,,则中最大;D.若,则.解析:ABD【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案.【详解】对于A:因为正数,公差不为0,且,所以公差,所以,即,根据等差数列的性质可得,又,所以,,故A正确;对于B:因为,则,所以,又,所以,所以,,所以使的最大的n为15,故B正确;对于C:因为,则,,则,即,所以则中最大,故C错误;对于D:因为,则,又,所以,即,故D正确,故选:ABD【点睛】解题的关键是先判断d的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题.19.已知等差数列的公差不为,其前项和为,且、、成等差数列,则下列四个选项中正确的有()A. B. C.最小 D.解析:BD【分析】设等差数列的公差为,根据条件、、成等差数列可求得与的等量关系,可得出、的表达式,进而可判断各选项的正误.【详解】设等差数列的公差为,则,,因为、、成等差数列,则,即,解得,,.对于A选项,,,A选项错误;对于B选项,,,B选项正确;对于C选项,.若,则或最小;若,则或最大.C选项错误;对于D选项,,D选项正确.故选:BD.【点睛】在解有关等差数列的问题时可以考虑化归为a1和d等基本量,通过建立方程(组)获得解,另外在求解等差数列前项和的最值时,一般利用二次函数的基本性质或者数列的单调性来求解.20.等差数列的前n项和记为,若,,则()A. B.C. D.当且仅当时,解析:AB【分析】根据等差数列的性质及可分析出结果.【详解】因为等差数列中,所以,又,所以,所以,,故AB正确,C错误;因为,故D错误,故选:AB【点睛】关键点睛:本题突破口在于由得到,结合,进而得到,考查学生逻辑推理能力.21.是等差数列,公差为d,前项和为,若,,则下列结论正确的是()A. B. C. D.解析:ABD【分析】结合等差数列的性质、前项和公式,及题中的条件,可选出答案.【详解】由,可得,故B正确;由,可得,由,可得,所以,故等差数列是递减数列,即,故A正确;又,所以,故C不正确;又因为等差数列是单调递减数列,且,所以,所以,故D正确.故选:ABD.【点睛】关键点点睛:本题考查等差数列性质的应用,解题的关键是熟练掌握等差数列的增减性及前项和的性质,本题要从题中条件入手,结合公式,及,对选项逐个分析,可判断选项是否正确.考查学生的运算求解能力与逻辑推理能力,属于中档题.22.等差数列的首项,设其前项和为,且,则()A. B. C. D.的最大值是或者解析:BD【分析】由,即,进而可得答案.【详解】解:,因为所以,,最大,故选:.【点睛】本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题.23.已知数列满足:,当时,,则关于数列说法正确的是()A. B.数列为递增数列C.数列为周期数列 D.解析:ABD【分析】由已知递推式可得数列是首项为,公差为1的等差数列,结合选项可得结果.【详解】得,∴,即数列是首项为,公差为1的等差数列,∴,∴,得,由二次函数的性质得数列为递增数列,所以易知ABD正确,故选:ABD.【点睛】本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.24.公差为的等差数列,其前项和为,,,下列说法正确的有()A. B. C.中最大 D.解析:AD【分析】先根据题意得,,再结合等差数列的性质得,,,中最大,,即:.进而得答案.【详解】解:根据等差数列前项和公式得:,所以,,由于,,所以,,所以,中最大,由于,所以,即:.故AD正确,BC错误.故选:AD.【点睛】本题考查等差数列的前项和公式与等差数列的性质,是中档题.三、等比数列多选题25.已知数列的前项和为,且,(,为非零常数),则下列结论正确的是()A.是等比数列 B.当时,C.当时, D.解析:ABC【分析】由和等比数列的定义,判断出A正确;利用等比数列的求和公式判断B正确;利用等比数列的通项公式计算得出C正确,D不正确.【详解】由,得.时,,相减可得,又,数列为首项为,公比为的等比数列,故A正确;由A可得时,,故B正确;由A可得等价为,可得,故C正确;,,则,即D不正确;故选:ABC.【点睛】方法点睛:由数列前项和求通项公式时,一般根据求解,考查学生的计算能力.26.已知数列是公比为q的等比数列,,若数列有连续4项在集合{-50,-20,22,40,85}中,则公比q的值可以是()A. B. C. D.解析:BD【分析】先分析得到数列有连续四项在集合,,18,36,中,再求等比数列的公比.【详解】数列有连续四项在集合{-50,-20,22,40,85}中数列有连续四项在集合,,18,36,中又数列是公比为的等比数列,在集合,,18,36,中,数列的连续四项只能是:,36,,81或81,,36,.或.故选:BD27.已知数列是等比数列,则下列结论中正确的是()A.数列是等比数列B.若则C.若则数列是递增数列D.若数列的前n和则r=-1解析:AC【分析】根据等比数列定义判断A;根据等比数列通项公式判断B,C;根据等比数列求和公式求项判断D.【详解】设等比数列公比为则,即数列是等比数列;即A正确;因为等比数列中同号,而所以,即B错误;若则或,即数列是递增数列,C正确;若数列的前n和则所以,即D错误故选:AC【点睛】等比数列的判定方法(1)定义法:若为非零常数),则是等比数列;(2)等比中项法:在数列中,且,则数列是等比数列;(3)通项公式法:若数列通项公式可写成均是不为0的常数),则是等比数列;(4)前项和公式法:若数列的前项和为非零常数),则是等比数列.28.关于递增等比数列,下列说法不正确的是()A. B. C. D.当时,解析:ABC【分析】由题意,设数列的公比为,利用等比数列单调递增,则,分两种情况讨论首项和公比,即可判断选项.【详解】由题意,设数列的公比为,因为,可得,当时,,此时,当时,,故不正确的是ABC.故选:ABC.【点睛】本题主要考查了等比数列的单调性.属于较易题.29.设为等比数列的前项和,满足,且,,成等差数列,则下列结论正确的是()A.B.C.若数列中存在两项,使得,则的最小值为D.若恒成立,则的最小值为解析:ABD【分析】根据等差中项列式求出,进而求出等比数列的通项和前项和,可知A,B正确;根据求出或或或,可知的最小值为,C不正确;利用关于单调递增,求出的最大、最小值可得结果.【详解】设等比数列的公比为,由,得,解得,所以,;;所以A,B正确;若,则,,所以,所以,则或或或,此时或或或;C不正确,,当为奇数时,,当为偶数时,,又关于单调递增,所以当为奇数时,,当为偶数时,,所以,,所以,D正确,故选:ABD.【点睛】本题考查了等差中项的应用,考查了等比数列通项公式,考查了等比数列的前项和公式,考查了数列不等式恒成立问题,属于中档题.30.在公比为等比数列中,是数列的前n项和,若,则下列说法正确的是()A. B.数列是等比数列C. D.解析:ACD【分析】根据等比数列的通项公式,结合等比数列的定义和对数的运算性质进行逐一判断即可.【详解】因为,所以有,因此选项A正确;因为,所以,因为常数,所以数列不是等比数列,故选项B不正确;因为,所以选项C正确;,因为当时,,所以选项D正确.故选:ACD【点睛】本题考查了等比数列的通项公式的应用,考查了等比数列前n项和公式的应用,考查了等比数列定义的应用,考查了等比数列的性质应用,考查了对数的运算性质,考查了数学运算能力.31.设等比数列的公比为q,其前n项和为,前n项积为,并且满足条件,,,则下列结论正确的是()A. B.C.的最大值为 D.的最大值为解析:AD【分析】根据题意,,再利用等比数列的定义以及性质逐一判断即可.【详解】因为,,,所以,,所以,故A正确.,故B错误;因为,,所以数列为递减数列,所以无最大值,故C错误;又,,所以的最大值为,故D正确.故选:AD【点睛】本题考查了等比数列的性质、定义,考查了基本知识的掌握情况,属于基础题.32.数列的前项和为,若,,则有()A. B.为等比数列C. D.解析:ABD【分析】根据的关系,求得,结合等比数列的定义,以及已知条件,即可对每个选项进行逐一分析,即可判断选择.【详解】由题意,数列的前项和满足,当时,,两式相减,可得,可得,即,又由,当时,,所以,所以数列的通项公式为;当时,,又由时,,适合上式,所以数列的的前项和为;又由,所以数列为公比为3的等比数列,综上可得选项是正确的.故选:ABD.【点睛】本题考查利用关系求数列的通项公式,以及等比数列的证明和判断,属综合基础题.33.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列称为“斐波那契数列”,记为数列的前项和,则下列结论正确的是()A. B.C. D.解析:ACD【分析】由题意可得数列满足递推关系,依次判断四个选项,即可得正确答案.【详解】对于A,写出数列的前6项为,故A正确;对于B,,故B错误;对于C,由,,,……,,可得:,故C正确.对于D,斐波那契数列总有,则,,,……,,,可得,故D正确;故选:ACD.【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换,属于中档题.34.设是无穷数列,若存在正整数k,使得对任意,均有,则称是间隔递增数列,k是的间隔数,下列说法正确的是()A.公比大于1的等比数列一定是间隔递增数列B.已知,则是间隔递增数列C.已知,则是间隔递增数列且最小间隔数是2D.已知,若是间隔递增数列且最小间隔数是3,则解析:BCD【分析】根据间隔递增数列的定义求解.【详解】A.,因为,所以当时,,故错误;B.,令,t在单调递增,则,解得,故正确;C.,当为奇数时,,存在成立,当为偶数时,,存在成立,综上:是间隔递增数列且最小间隔数是2,故正确;D.若是间隔递增数列且最小间隔数是3,则,成立,则,对于成立,且,对于成立即,对于成立,且,对于成立所以,且解得,故正确.故选:BCD【点睛】本题主要考查数列的新定义,还考查了运算求解的能力,属于中档题.35.已知数列是等比数列,则下列结论中正确的是()A.数列是等比数列B.若,,则C.若,则数列是递增数列D.若数列的前和,则解析:AC【分析】在中,数列是等比数列;在中,;在中,若,则,数列是递增数列;在中,.【详解】由数列是等比数列,知:在中,,是常数,数列是等比数列,故正确;在中,若,,则,故错误;在中,若,则,数列是递增数列;若,则,数列是递增数列,故正确;在中,若数列的前和,则,,,,,成等比数列,,,解得,故错误.故选:.【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.36.对于数列,若存在数列满足(),则称数列是的“倒差数列”,下列关于“倒差数列”描述正确的是()A.若数列是单增数列,但其“倒差数列”不一定是单增数列;B.若,则其“倒差数列”有最大值;C.若,则其“倒差数列”有最小值;D.若,则其“倒差数列”有最大值.解析:ACD【分析】根据新定义进行判断.【详解】A.若数列是单增数列,则,虽然有,但当时,,因此不一定是单增数列,A正确;B.,则,易知是递增数列,无最大值,B错;C.,则,易知是递增数列,有最小值,最小值为,C正确;D.若,则,首先函数在上是增函数,当为偶数时,,∴,当为奇数时,,显然是递减的,因此也是递减的,即,∴的奇数项中有最大值为,∴是数列中的最大值.D正确.故选:ACD.【点睛】本题考查数列新定义,解题关键正确理解新定义,把问题转化为利用数列的单调性求最值.四、平面向量多选题37.题目文件丢失!38.题目文件丢失!39.下列说法中正确的是()A.对于向量,有B.向量,能作为所在平面内的一组基底C.设,为非零向量,则“存在负数,使得”是“”的充分而不必要条件D.在中,设是边上一点,且满足,,则答案:BCD【分析】.向量数量积不满足结合律进行判断.判断两个向量是否共线即可.结合向量数量积与夹角关系进行判断.根据向量线性运算进行判断【详解】解:.向量数量积不满足结合律,故错误,.,解析:BCD【分析】.向量数量积不满足结合律进行判断.判断两个向量是否共线即可.结合向量数量积与夹角关系进行判断.根据向量线性运算进行判断【详解】解:.向量数量积不满足结合律,故错误,.,向量,不共线,能作为所在平面内的一组基底,故正确,.存在负数,使得,则与反向共线,夹角为,此时成立,当成立时,则与夹角满足,则与不一定反向共线,即“存在负数,使得”是“”的充分而不必要条件成立,故正确,.由得,则,,则,故正确故正确的是,故选:.【点睛】本题主要考查向量的有关概念和运算,结合向量数量积,以及向量运算性质是解决本题的关键,属于中档题.40.在中,内角A、B、C所对的边分别为a、b、c,不解三角形,确定下列判断错误的是()A.B=60°,c=4,b=5,有两解B.B=60°,c=4,b=3.9,有一解C.B=60°,c=4,b=3,有一解D.B=60°,c=4,b=2,无解答案:ABC【分析】根据判断三角形解的个数的结论:若为锐角,当时,三角形有唯一解;当时,三角形有两解;当时,三角形无解:当时,三角形有唯一解.逐个判断即可得解.【详解】对于,因为为锐角且,所以三角解析:ABC【分析】根据判断三角形解的个数的结论:若为锐角,当时,三角形有唯一解;当时,三角形有两解;当时,三角形无解:当时,三角形有唯一解.逐个判断即可得解.【详解】对于,因为为锐角且,所以三角形有唯一解,故错误;对于,因为为锐角且,所以三角形有两解,故错误;对于,因为为锐角且,所以三角形无解,故错误;对于,因为为锐角且,所以三角形无解,故正确.故选:ABC.【点睛】本题考查了判断三角形解的个数的方法,属于基础题.41.在RtABC中,BD为斜边AC上的高,下列结论中正确的是()A. B.C. D.答案:AD【分析】根据向量的数量积关系判断各个选项的正误.【详解】对于A,,故A正确;对于B,,故B错误;对于C,,故C错误;对于D,,,故D正确.故选:AD.【点睛】本题考查三角形解析:AD【分析】根据向量的数量积关系判断各个选项的正误.【详解】对于A,,故A正确;对于B,,故B错误;对于C,,故C错误;对于D,,,故D正确.故选:AD.【点睛】本题考查三角形中的向量的数量积问题,属于基础题.42.如图,在平行四边形中,分别为线段的中点,,则()A. B.C. D.答案:AB【分析】由向量的线性运算,结合其几何应用求得、、、,即可判断选项的正误【详解】,即A正确,即B正确连接AC,知G是△ADC的中线交点,如下图示由其性质有∴,即C错误同理,解析:AB【分析】由向量的线性运算,结合其几何应用求得、、、,即可判断选项的正误【详解】,即A正确,即B正确连接AC,知G是△ADC的中线交点,如下图示由其性质有∴,即C错误同理,即∴,即D错误故选:AB【点睛】本题考查了向量线性运算及其几何应用,其中结合了中线的性质:三角形中线的交点分中线为1:2,以及利用三点共线时,线外一点与三点的连线所得向量的线性关系43.已知为的重心,为的中点,则下列等式成立的是()A. B.C. D.答案:ABD【分析】根据向量的加减法运算法则依次讨论即可的答案.【详解】解:如图,根据题意得为三等分点靠近点的点.对于A选项,根据向量加法的平行四边形法则易得,故A正确;对于B选项,,由于为三解析:ABD【分析】根据向量的加减法运算法则依次讨论即可的答案.【详解】解:如图,根据题意得为三等分点靠近点的点.对于A选项,根据向量加法的平行四边形法则易得,故A正确;对于B选项,,由于为三等分点靠近点的点,,所以,故正确;对于C选项,,故C错误;对于D选项,,故D正确.故选:ABD【点睛】本题考查向量加法与减法的运算法则,是基础题.44.已知、是任意两个向量,下列条件能判定向量与平行的是()A. B.C.与的方向相反 D.与都是单位向量答案:AC【分析】根据共线向量的定义判断即可.【详解】对于A选项,若,则与平行,A选项合乎题意;对于B选项,若,但与的方向不确定,则与不一定平行,B选项不合乎题意;对于C选项,若与的方向相反,解析:AC【分析】根据共线向量的定义判断即可.【详解】对于A选项,若,则与平行,A选项合乎题意;对于B选项,若,但与的方向不确定,则与不一定平行,B选项不合乎题意;对于C选项,若与的方向相反,则与平行,C选项合乎题意;对于D选项,与都是单位向量,这两个向量长度相等,但方向不确定,则与不一定平行,D选项不合乎题意.故选:AC.【点睛】本题考查向量共线的判断,考查共线向量定义的应用,属于基础题.45.有下列说法,其中错误的说法为().A.若∥,∥,则∥B.若,则是三角形的垂心C.两个非零向量,,若,则与共线且反向D.若∥,则存在唯一实数使得答案:AD【分析】分别对所给选项进行逐一判断即可.【详解】对于选项A,当时,与不一定共线,故A错误;对于选项B,由,得,所以,,同理,,故是三角形的垂心,所以B正确;对于选项C,两个非零向量解析:AD【分析】分别对所给选项进行逐一判断即可.【详解】对于选项A,当时,与不一定共线,故A错误;对于选项B,由,得,所以,,同理,,故是三角形的垂心,所以B正确;对于选项C,两个非零向量,,若,则与共线且反向,故C正确;对于选项D,当,时,显然有∥,但此时不存在,故D错误.故选:AD【点睛】本题考查与向量有关的命题的真假的判断,考查学生对基本概念、定理的掌握,是一道容易题.46.在中,设,,,,则下列等式中成立的是()A. B. C. D.答案:ABD【分析】根据平行四边形及向量的加法法则即可判断.【详解】由向量加法的平行四边形法则,知成立,故也成立;由向量加法的三角形法则,知成立,不成立.故选:ABD【点睛】本题主要考查解析:ABD【分析】根据平行四边形及向量的加法法则即可判断.【详解】由向量加法的平行四边形法则,知成立,故也成立;由向量加法的三角形法则,知成立,不成立.故选:ABD【点睛】本题主要考查了向量加法的运算,数形结合,属于容易题.47.已知正三角形的边长为2,设,,则下列结论正确的是()A. B. C. D.答案:CD【分析】分析知,,与的夹角是,进而对四个选项逐个分析,可选出答案.【详解】分析知,,与的夹角是.由,故B错误,D正确;由,所以,故A错误;由,所以,故C正确.故选:CD【点睛】解析:CD【分析】分析知,,与的夹角是,进而对四个选项逐个分析,可选出答案.【详解】分析知,,与的夹角是.由,故B错误,D正确;由,所以,故A错误;由,所以,故C正确.故选:CD【点睛】本题考查正三角形的性质,考查平面向量的数量积公式的应用,考查学生的计算求解能力,属于中档题.48.点P是所在平面内一点,满足,则的形状不可能是()A.钝角三角形 B.直角三角形 C.等腰三角形 D.等边三角形答案:AD【解析】【分析】由条件可得,再两边平方即可得答案.【详解】∵P是所在平面内一点,且,∴,即,∴,两边平方并化简得,∴,∴,则一定是直角三角形,也有可能是等腰直角三角形,故解析:AD【解析】【分析】由条件可得,再两边平方即可得答案.【详解】∵P是所在平面内一点,且,∴,即,∴,两边平方并化简得,∴,∴,则一定是直角三角形,也有可能是等腰直角三角形,故不可能是钝角三角形,等边三角形,故选:AD.【点睛】本题考查向量在几何中的应用,考查计算能力,是基础题.五、复数多选题49.已知复数Z在复平面上对应的向量则()A.z=-1+2i B.|z|=5 C. D.答案:AD【分析】因为复数Z在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD【分析】因为复数Z在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z在复平面上对应的向量,所以,,|z|=,,故选:AD50.已知复数(其中为虚数单位)下列说法正确的是()A.复数在复平面上对应的点可能落在第二象限B.可能为实数C.D.的虚部为答案:BC【分析】分、、三种情况讨论,可判断AB选项的正误;利用复数的模长公式可判断C选项的正误;化简复数,利用复数的概念可判断D选项的正误.【详解】对于AB选项,当时,,,此时复数在复平面内的点解析:BC【分析】分、、三种情况讨论,可判断AB选项的正误;利用复数的模长公式可判断C选项的正误;化简复数,利用复数的概念可判断D选项的正误.【详解】对于AB选项,当时,,,此时复数在复平面内的点在第四象限;当时,;当时,,,此时复数在复平面内的点在第一象限.A选项错误,B选项正确;对于C选项,,C选项正确;对于D选项,,所以,复数的虚部为,D选项错误.故选:BC.51.下列四个命题中,真命题为()A.若复数满足,则 B.若复数满足,则C.若复数满足,则 D.若复数,满足,则答案:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A,若复数满足,设,其中,则,则选项A正确;对选项B,若复数满足,设,其中,且,则,则选项B正确;对选项C,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A,若复数满足,设,其中,则,则选项A正确;对选项B,若复数满足,设,其中,且,则,则选项B正确;对选项C,若复数满足,设,则,但,则选项C错误;对选项D,若复数,满足,设,,则,而,则选项D错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.52.下面关于复数的四个命题中,结论正确的是()A.若复数,则 B.若复数满足,则C.若复数满足,则 D.若复数,满足,则答案:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A选项,设复数,则,因为,所以,因此,即A正确;B选项,设复数,则,因为,所,若,则;故B错;C选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A选项,设复数,则,因为,所以,因此,即A正确;B选项,设复数,则,因为,所,若,则;故B错;C选项,设复数,则,因为,所以,即,所以;故C正确;D选项,设复数,,则,因为,所以,若,能满足,但,故D错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.53.已知复数(其中为虚数单位),则()A.复数在复平面上对应的点可能落在第二象限 B.可能为实数C. D.的实部为答案:BC【分析】由可得,得,可判断A选项,当虚部,时,可判断B选项,由复数的模计算和余弦的二倍角公式可判断C选项,由复数的运算得,的实部是,可判断D选项.【详解】因为,所以,所以,所以,所以A选解析:BC【分析】由可得,得,可判断A选项,当虚部,时,可判断B选项,由复数的模计算和余弦的二倍角公式可判断C选项,由复数的运算得,的实部是,可判断D选项.【详解】因为,所以,所以,所以,所以A选项错误;当,时,复数是实数,故B选项正确;,故C选项正确:,的实部是,故D不正确.故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.54.已知复数(为虚数单位),为的共轭复数,若复数,则下列结论正确的有()A.在复平面内对应的点位于第二象限 B.C.的实部为 D.的虚部为答案:ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确;对选项,因为,所以选项正确;对选项复数的实部为,所以选项正确;对选项,的虚部为,所以选项错误.故选:ABC【点睛】本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.55.已知为虚数单位,以下四个说法中正确的是().A.B.C.若,则复平面内对应的点位于第四象限D.已知复数满足,则在复平面内对应的点的轨迹为直线答案:AD【分析】根据复数的运算判断A;由虚数不能比较大小判断B;由复数的运算以及共轭复数的定义判断C;由模长公式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论