版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1MeasurementSystemsAnalysisLearningObjectivesTo:UnderstandtheneedforaMeasurementSystemsAnalysis(MSA)UnderstandthecomponentsoftheMeasurementSystemUnderstandthetestsinvolvedinaMSAToexecuteaVariablesGageRepeatability&Reproducibility(VGR&R)Isoplot(continuousdata)AttributeGageRepeatability&Reproducibility(AGR&RLearnhowtofixapoorMeasurementSystemUnderstandhowapoorMeasurementSystemimpactsCapabilityMeasurementSystemAnalysisQuantifywasteIdentifypossibleBoB/WoWleversExperimentIsolateandverifytherootcausebyfocusing&splittingdictionariesusingdataConcludewhatconditionshavetobeimproved/redesignedUpdateMFRGeneratesolutionsVerifysolutionsDefinepermanentcountermeasuresRiskanalysisDescribethemodifiedprocess:newprocessmapUpdateMFRDesigntheimplementationplanDefine/trackactivitiesTrackcountermeasuresimplementationCommunicateandclarifytotheorganisationImproveTrackperformanceUpdateMFREnsurechangesareanchoredintheorganizationTrainallrelevantpeopleStandardizeModifyauditchecklistsTrackimprovedperformanceUpdateMFRAcommonviewofthe‘asis’processandhowwellitisperformingIdentifycriticalcausesand/orlevers(Thevitalfew)DescribeandDesigntheimprovedprocessDrawuptheimplementationplanandintroduceconfirmresultsEstablishcontrolandhandovertoprocessowner.MapMeasureExplore
EvaluateDefine
DescribeImplementImproveControlConformDescribeproblem(oropportunity)andobjectiveMeasurehistoricalperformancetrendsSetupmeasure-mentsystemMapcurrentprocessShareavailableknowledgeandgetacommonviewManagebyfacts,notopinionsStartMFRReportWhyPerformaMeasurementSystemAnalysis(MSA)?Toensurethatthemeasurementsystemisnotasignificantsourceofvariability.TodeterminewhetheractionsarenecessarytorepairorreplacethemeasurementsystemToaccuratelyandpreciselydeterminethetruecapabilityofourprocess.WhatisaMSA?Asetofdesignedexperimentstodeterminewhetherthemeasurementsystemisbothaccurateandprecise.AccuracycomparesthemeasurementsystemaveragetoastandardPrecisionisameasureofthemeasurementsystemvariabilityThereisaMSAforthetwotypesofdataVariables Agageisusedbymanyoperatorstomeasureapartcharacteristictosatisfyacustomerstandard.Attribute Peopleareinspectingpartsoritemstodeterminewhetherthecolorofapart,ascreenprint,fieldsinaform,timeorsomeotherattributeisacceptablecomparedtoacustomerstandard.SomeprojectsrequirecreativitytoconductanMSAOperationalDefinition
EXTREMELYIMPORTANTInanyMSAitisABSOLUTELYCRITICALtowritedownanOPERATIONALDEFINITION:AStandardMethodInmanycasestheOperationalDefinitionincludesanUpperandLowerSpecificationLimitInothercasesitisawrittendefinitionthatdescribesexactlyhowthemeasurementsaretobemade,forexampleAcompanywantsanitemtobedeliveredin3days.Whendoestheclockstartandwhendoestheclockstopt0–CustomerplacesorderwithCustomerServiceRepresentative(CSR)t1–CSRentersorderinsystemt2–Orderisscheduledtobemanufacturedt3–Orderismadet4–Orderisstockedt5–Orderisattheshippingdockreadytobepickedupt6–Orderispickedupt7–Orderisdeliveredt8–Orderisstockedt0t1t2t3t4t5t6t7t8Whoisresponsiblefordeterminingthestandard?Continuous/VariablesMSAWhatistheTrueDPMO?ABlackBeltisinterestedinknowingtheDPMOofthediameterofabatchoflampfilamentscomparedtocustomerspeclimitsShesamples30filamentsandplotsthediametersinanHistogramLSLUSLHowdoweknowthatourmeasurementsystemcanproperlyrejectbadpartsandproperlyacceptgoodparts,suchthatwecanevaluateourtrueDPMO?SourcesofVariabilityObjective-toensurethevariabilityfromthemeasurementsystemislessthansomeacceptablevaluesuchthatwecanassessourtrueprocesscapability.AccuracyandPrecisionwithintheMeasurementSystemSourcesofVariabilitywithintheMeasurementSystemcanbeattributedtoeitherAccuracy–MeasurementSystemaveragesoutlinedbelowinredDiscrimination–MeasurementSystemresolutionoutlinedinblackPrecision–MeasurementSystemvariabilityoutlinedbelowinblueAccuracy
ExplanationAccuracyisameasureofcentrallocationwithrespecttoaknownreferencestandardKnownReferenceStandardProcessAverageAccuracy
BiasMeasurementSystemBias:-Todeterminewhetheranoffsetexistsinthegage,determinedviaa“calibrationprogram”:Amasterpartisidentified10measuresofthemasterpartaremadeandtheaveragevalueiscalculatedTodeterminethebiastheaveragevalueissubtractedfromthemastervalueThegageisoffsetbytheamountofthebias.TruevalueMeasuredvaluesmeasurementbiasAccuracy
BiasExampleABlackBeltneedstoconductaMSAandshefirsttestsforBias.Sheidentifiesamasterpartandthegageusedtomeasurethispart.Themasterpartisknowntobe0.350”.Sheasksanoperatortomeasurethepart10timesandrecordsthesevalues,whichareshownbelow.ShethendeterminestheMeasurementSystemBiasbysubtracttheaverageofthese10measuresfrom0.350”0.350”0.341”0.343”0.330”0.340”0.358”0.352”0.329”0.330”0.348”TheseresultsindicatethatonaveragethemeasurementsystemisBiasedby-0.007”.Thereforesheneedstooffsetthegagebypositive0.007”Accuracy
LinearityMeasurementSystemLinearity:-TheabilityoftheMeasurementSystemtomeasureoveritsoperatingrangewithminimalBiasIdentifymasterpartsthatspantheoperatingrangeofthegageanddeterminethebiasoftheseparts.PlotthedatainascatterplotwheretheX-axisarethemasterpartsandtheY-axisaretherespectivebiasesFitaregressionlinetothedataLinearityResults:R2oftheregressionlinetobeascloseto100%aspossibleTheslopeoftheregressionlinetobeascloseto0aspossibleindicatingnobiasacrosstheoperatingrangeAccuracy
MinitabKeystrokes-LinearityExampleABlackBeltcontinueswithherMSAandconductsalinearitystudy.Sheidentifies5masterpartsthatspantheoperatingrange(2”to10”)ofhergage.Oneoperatormeasuredeachpart12timesandrecordsthedatainMinitab.Gagelin.mtwStat>QualityTools>GageLinearityStudySelectPartandenterin“PartNumbers”SelectMasterandenterin“MasterMeasurements”SelectResponseandenterin“MeasurementData”Determineyourlong-termhistoricaldeviation,multiplyby6andenterinProcessVariationAccuracy
MinitabGraphOutputforLinearitySlopeoftheregressionline*(6*s)100*{Slopeoftheregressionline*(6*s)}R2oftheRegressionlineAveragebiasAveragebias/(6*s)Theslopeoftheregressionlineisdeterminedbydividingthe%linearityby100inthiscaseitisrelativelylowat0.1317TheR2isveryhighindicatingthesystemislinearAccuracy
StabilityStabilityResultsIncontrolcontrolchartIfadatapointisoutofcontrolgagemayrequirecalibration.MeasurementSystemStability–TheamountofvariabilityintheBiasovertime.OnadailyoraweeklybasisstabilityismeasuredbyplottingtheresultsofyourbiasstudyinaControlChart.Accuracy
StabilityExampleTheBlackBeltretrievesthelastthreemonthsofbiasdataasmeasuredonadailybasisbytheQualityControldepartment.SheplotsthisinformationinanIndividualsandMovingRangeChart(I-mR).Theseresultsareshownbelow.Accuracy
StabilityExampleAnoutofcontrolconditionononeofthecontrolchartsisanindicationthatthemethodtocalibratetheMeasurementSystemneedstobeevaluatedDiscriminationDiscrimination–TheabilityoftheMeasurementSystemtodetectadequatechangesinprocessvariationAtaminimumthemeasurementsystemshouldbeabletodiscriminateto1/10thetolerance(UpperSpecification–LowerSpecificationLimit)Ideallywedesiretomeasure1/10theprocessvariationLSL=0.200”LSL=0.300”LSL=0.200”LSL=0.300”DiscriminationItcanbeverycostlytohaveameasurementsystemdiscriminate1/10theProcessVariationLSL=0.200”LSL=0.300”Howexpensivewoulditbeifwewereabletomeasure1/10thelong-termprocessvariationshownabove?PrecisionPrecisionisameasureofvariabilityTestforBias,Linearity,andStabilityensurestheMeasurementSystemisontargetPrecisionensuresthereisminimalvariabilityinthemeasuresAmuchmoredesirablestateWhatistheTrueVariabilityofthePartsbeingMeasured?ABlackBeltneedstoknowtheamountofvariabilityinthediameterofabatchoffilaments30filamentsdiametersareplottedinaHistogramThewidthofthehistogramisassumedtheresultsofthevariabilityinthediameterofthefilaments.Doothersourcesofvariabilityinfluencethehistogram?Precision
Part&MeasurementVariabilityAGageRepeatability&Reproducibility(GR&R)StudyisadesignedexperimentthatpartitionssourcesofvariabilitywithintheMeasurementSystemAGR&RcanbeconductedforbothAttributeandVariablesdataPrecision
GageRepeatability&ReproducibilityTheMeasurementSystemvariabilitycanbefurtherpartitionedintoRepeatability&ReproducibilityPrecision
Repeatability&ReproducibilityRepeatability–DetermineswhetherthevariabilityofthegageisconsistentTheabilityofthegagetoachievethesamemeasuredvaluewhenoneoperatormeasuresthesameparttwice.Reproducibility–Determineswhetherthevariabilitybetweenoperatorsisconsistent.Theabilityofmultipleoperators,whentheytakemultiplemeasuresononepart,toachievethesameaveragevalues.UnderstandingthecontributionfromRepeatability&ReproducibilitycanassistinresolvingsomemeasurementsystemissuesHowMuchVariabilityisAcceptableintheMeasurementSystem?WhenconductingaVGR&RthefollowingratiosareusedtodeterminewhethertheMeasurementSystemisacceptable
%Contribution*
%Study*
%Tolerance*Unacceptable >10% >30% >30%Marginal 3–10% 10–30% 10–30%Excellent <3 <10% <10% *Note:Intheactualformulathevariancesorstandarddeviationsaremultipliedby5.15,whichrepresents99%oftheareaunderanormalcurveHowistheVariabilityinaVGR&RPartitioned?ToconductaVGR&Rthefollowingareidentified:10Partsthatspantherangeofthelong-termvariability2or3OperatorswhousethegageTheGageusedtotakethemeasuresTheExperimentisdesignedasfollows-1123121212PartsOperatorsRepeatMeasures2123121212312312121210partsmeasuredtwicebythreeoperators=60measuresConductingtheVGR&R
SettingUptheMinitabWorksheetAVGR&Rwillbeconductedwith10parts,3operators,2repeats.OpenaMinitabworksheetandtitle3columns,Parts,Operators,andMeasuresForthe“Parts”columnweneedtolist1through10,6timesfor60measuresCalc>MakePatternedData>SimpleSetofnumbersandenterthedataasfollowsConductingtheVGR&R
SettingUptheMinitabWorksheetForthe“Operators”columnweneedtolist1through3,10timeseachandthenlistthesequencetwiceCalc>MakePatternedData>SimpleSetofnumbersandenterthedataasfollowsConductingtheVGR&R
9StepMethodThefollowingstepsareusedtoconductaVGR&R:CalibratethegageSelect10partsthatspantherangeofthelong-termvariabilityoftheprocess.Ifnotpossible,collectpartsoverseveraldays.Identify2or3operatorswhousethegage.ConducttheVGR&RthegageisusedHavethefirstoperatormeasurethepartsinrandomorderandrecordthemeasuresinMinitab.Havethesecondandthirdoperatorsmeasurethepartsinrandomorder.Repeatsteps5and6suchthatalloperatorshavemeasuredeachparttwiceinrandomorder.AnalyzetheresultsinMinitabDrawyourconclusionsandifrequiredtakecorrectiveaction.Let’sassumewehaveconductedaVGR&RandweneedtoanalyzethedataOpenfileVGR&RExample.mtwAnalyzingtheVGR&RData
MinitabKeystrokesToanalyzethedataclickonStat>QualityTools>GR&RStudy(Crossed),thenentertheParts,Operators,andMeasuresinformation.AlwayshaveANOVAclickedonClickon“Options”andenter.2fortolerance,asthatistheUSL–LSLforthischaracteristic.AnalyzingtheVGR&RData
MinitabSessionWindowGageR&RStudy-ANOVAMethodGageR&RforMeasuresTwo-WayANOVATableWithInteractionSourceDFSSMSFP
Parts90.00918160.0010202289.4510.00000Operators20.00011050.000055315.6790.00011Operators*Parts180.00006340.00000351.5420.14308Repeatability300.00006860.0000023Total590.0094242GageR&R %ContributionSourceVarComp(ofVarComp)
TotalGageR&R5.49E-063.14Repeatability2.29E-061.31Reproducibility3.21E-061.83Operators2.59E-061.48Operators*Parts6.20E-070.35Part-To-Part1.69E-0496.86TotalVariation1.75E-04100.00
StdDevStudyVar%StudyVar%ToleranceSource(SD)(5.15*SD)(%SV)(SV/Toler)
TotalGageR&R2.34E-031.21E-0217.726.03Repeatability1.51E-037.79E-0311.433.89Reproducibility1.79E-039.22E-0313.544.61Operators1.61E-038.28E-0312.164.14Operators*Parts7.87E-044.05E-035.952.03Part-To-Part1.30E-026.70E-0298.4233.52TotalVariation1.32E-026.81E-02100.0034.06NumberofDistinctCategories=8Whatdoesallofthismean? ANOVAtable
VarianceComponents PartitioningtheVariability Thissectionderived fromVarianceComponents123Weareinterestedinsections2and3AnalyzingtheVGR&RResults
VarianceComponents %ContributionSourceVarComp(ofVarComp)
TotalGageR&R5.49E-06
3.14
Repeatability2.29E-061.31Reproducibility3.21E-061.83Operators2.59E-061.48Operators*Parts6.20E-070.35Part-To-Part1.69E-0496.86TotalVariation1.75E-04100.001.75E-04=1.69E-04+5.49E-06100%=96.86%+3.14%2.29E-06+3.21E-06
1.31%+1.83%2.59E-06+6.20E-07
1.48%+0.35%* WhentheP-valueintheANOVAtableforReproducibilityis<0.25MinitabwillfurtherpartitionReproducibilityintothatfromtheOperatorandOp*PartInteraction.%ContributionAnalyzingtheVGR&RResults
StandardDeviation %ContributionSourceVarComp(ofVarComp)
TotalGageR&R5.49E-063.14Repeatability2.29E-061.31Reproducibility3.21E-061.83Operators2.59E-061.48Operators*Parts6.20E-070.35Part-To-Part1.69E-0496.86TotalVariation1.75E-04100.00
StdDevStudyVar%StudyVar%ToleranceSource(SD)(5.15*SD)(%SV)(SV/Toler)
TotalGageR&R2.34E-031.21E-0217.726.03
Repeatability1.51E-037.79E-0311.433.89Reproducibility1.79E-039.22E-0313.544.61Operators1.61E-038.28E-0312.164.14Operators*Parts7.87E-044.05E-035.952.03Part-To-Part1.30E-026.70E-0298.4233.52TotalVariation1.32E-026.81E-02100.0034.06NumberofDistinctCategories=812345Variance(s2)StandardDeviation(s)5.15*St.Dev.
(99%areaundernormalcurve)RatiosofSourcesvs.TotalVariationRatiosofSourcesvs.Tolerance%Study%ToleranceAnalyzingtheVGR&RDataThemeasurementsystemisdeemedtobemarginalUnacceptable >10% >30% >30%Marginal 3–10% 10–30% 10–30%Excellent <3 <10% <10%
%Contribution
%Study
%ToleranceSincetheGageismarginal,whatactionshouldwetaketoimprovethegage?AnalyzingtheVGR&RData
MinitabGraphsAnalyzingtheVGR&RGraphswillhelpdetermineareasforimprovement.Wewilllookateachgraphindividually.AnalyzingtheVGR&RResults
MinitabGraphs–ComponentsofVariationThisgraphisabarchartofthedataintheMinitabSessionWindowThisgraphdoesnotprovideuswithanyquantitativeinformationDONOTreadthisgraphtodeterminewhetherthemeasurementsystemisacceptable.READthenumbersdirectlyfromthesessionwindow.AnalyzingtheVGR&RResults
MinitabGraphs–RChartbyOperators
Eachdatapointrepresentstherange(max–min)foreachpartmeasuredtwicebyeachoperator.ThedatapointsarerunintheordertheyareenteredwithintheMinitabworksheet,1-10.Thisgraphrepresentstherepeatabilityofthegage.Wedesireallofthepointsonthisgraphtobewithinthetworedlinesasthisindicatesarepeatablegage.AnalyzingtheVGR&RResults
MinitabGraphs–X-barChartbyOperatorsEachdotrepresentstheaverageofthetwomeasuresbyeachoperatorTheredlines(UpperandLowerControlLimits–calculatedfromtheRchartbyOperators)representsthevariabilityinthegage.Thevariabilityobservedinthisgraphrepresentsthevariabilityintheparts.Wedesirethesedotstobeoutsidetheredlines.ThisindicatesthevariabilityinthepartsisgreaterthanthevariabilityinthegageAnalyzingtheVGR&RResults
MinitabGraphs–ByPartsTheX-axisrepresentsthe10partsthatweremeasuredEachdotrepresentsameasureforthatpart.Eachpartwasmeasuredtwicebythreeoperatorsthereforetherewouldbe6dotsperpartTheredcrossesrepresenttheaverageofsixmeasuresforeachpartTheperfectgraphwouldcontainoneblackdotforeachpartindicatingtheexactsamemeasuresbyeachoperator.AnalyzingtheVGR&RResults
MinitabGraphs–ByOperatorsTheX-axisrepresentsthe3OperatorsEachdotrepresentsameasurebyanoperatorforeverypart.Thereare20measuresperoperator(10partsmeasuredtwice).TheredcrossesrepresentstheaverageofallmeasuresforeachoperatorThevariabilityobservedwithinanoperatorshouldbeduetothevariabilityofthe10partsTheidealgraphwouldhaveallofthedotsforeachoperatoralignedandtheredaveragelinewouldbehorizontal.AnalyzingtheVGR&RResults
MinitabGraphs–Operators*PartsInteractionTheX-axisrepresentsthe10partsThedotsrepresentseachoperatorsaveragemeasureforthe10partsTheidealplotiswhenallthreelines(operators)overlaponeanotherindicatingtheexactsameaveragemeasureforeachpart.Whenthelinesdivergearoundonepartthatisanindicationthattheoperatorsarehavingdifficultymeasuringthatpart.VGR&RConclusionsBasedonthedataintheMinitabSessionwindowthegageismarginallyacceptable.ThevariabilityintheMeasurementSystemappearstobeevenlydividedbetweenRepeatability(1.31%)andReproducibility(1.83%),basedon%ContributionThegreatestopportunityforimprovementappearstobeinReproducibilityspecificallytheOperators(1.48%).ThisisvalidatedbyobservingtheOperators*PartsInteractiongraph.OnaverageOperator3appearstobemeasuringconsistentlylowerthanOperators1and2.NextStepsObserveanddocumentthedifferenceinmethodsbetweenOperators1and2vs.3andwiththeoperatorsdeterminewhoismeasuringmoreaccurately.Identifybestmethodandstandardize.RepeatVGR&RtovalidateVGR&RExerciseObjective–Toconduct,analyze,anddrawconclusionsinaVGR&R.Assembleingroupsof4andidentifyanAdministratorand3Operators.TheVGR&Rwillconsistof3operators,7parts,3repeatmeasures,unlessotherwisenoted.Theadministratorwillcollectfromtheinstructor7partstobemeasuredandthegage.AllparticipantsinthegroupbeginonSlide29andcreatetheMinitabworksheetinordertoconducttheVGR&RandcontinuefromthereDuringtheVGR&R,theadministratorneedstohidethesamplesfromtheoperatorsandtheoperatorsaretomeasuretheminrandomorder.Asoneoperatorismeasuringtheotheroperatorsarerequiredtobeoutoftheroom.Afterallofthedatahasbeencollected,acopyneedstobegiventoeachpersoninthegroupsotheycananalyzethedataindividual.ThendiscussasagrouptodrawconclusionsWhenyouhavecompletedyouranalysiscalltheInstructorovertoreviewyourresultsFixesforaPoorMeasurementSystemDONOTTHROWOUTANYOFTHEPARTSINTHEMSAReviewthedataenteredintoMinitabanddetermineifanynumbersweretransposedorenteredincorrectly,correct,andre-analyzethedata.Ifthereappearstobeoneortwooutliersinthedatasetandnumberswerenottransposedhavetheoperatorsre-measurethepartandreanalyze.ReproducibilityContactSupplieroftoidentifypropermethodologyofusingthegageTraintheOperatorsinacommonmethodologyEnsureanyfixturesrequiredforthetestarecorrectandanynecessarytoolsareavailableEnsurelightingintheareaisadequateRepeatabilityContactSupplierofgageastocorrectSetupofgagePropersoftwaresettingsEnsureyouareusingthepropergageforthecharacteristictobemeasuredRepairthegageBuynewgageFixesforaPoorMeasurementSystem
StopGap-CentralLimitTheorem(CLT)IfafixcannotbeimplementedimmediatelyusetheCLTBytakingmultiplemeasuresandaveragingthesemeasuredwecanreducethevariabilityinthemeasurementsystembyoneoverthesquarerootofthenumberofmeasures–Example–Ameasurementsystemhasbeendeemedunacceptableandanimmediatefixcannotbeimplemented.Haveeachoperatormeasureeachsamplefourtimesandtaketheaverageofthefourmeasures.EntertheseaveragesintoMinitabandanalyzetheVGR&R.IfacceptabletheoperatorsonthefloorwillthenberequiredtotaketheaverageoffourmeasuresandreportthisvalueTheCLTisnotasolutiontoapoorMeasurementSystemItneedstobefixed!!!WhatiftheMSAisaDestructiveTest?Batchesofpartswillbepreparedthatrepresentthelong-termvariabilityoftheprocess.ItisassumedthatthevariabilityofthepartswithinabatchareconsistentAtestisconductedwith3Operators,10parts,2measures,thestepsareasfollows:Prepare10batchesofparts,wherethebatchesspanthelong-termvariabilityoftheprocess.Forthistest6partsshouldbepreparedperbatch.ThefirstoperatormeasuresarandomsamplefromarandombatchandproceedtomeasureonesamplefromeachbatchThesecondandthirdoperatorsmeasureonesampleeachfromeachbatchThefirstoperatorrepeatsbydrawinganothersamplefromeachbatch,asdothesecondandthirdoperators.AnalyzethedatainMinitabusing
Stat>QualityTools>GR&RStudy(Nested)Readsessionwindowandgraphsthesame asGR&R(Crossed)anddrawconclusions inthesamemanner11234562123456BatchesSamplesSamplesPoorMSAResults-ImpactonDPMO
BiasIssuesProblemswithBiasScenario1BiashasnotbeencorrectedandweareacceptingBadPartsBiasCorrectedLSLUSLLSLUSLAcceptingmanybadpartsthatshouldhavebeenrejected.FalselyunderestimatedDPMOBiasisanissuePoorMSAResults-ImpactonDPMO
BiasIssuesProblemswithBiasScenario2BiashasnotbeencorrectedandwearerejectingGoodPartsBiasCorrectedLSLUSLLSLUSLRejectinggoodpartsthatshouldhavebeenaccepted.FalselyoverestimatedDPMOBiasisanissuePoorMSAResults-ImpactonDPMO
Repeatability&ReproducibilityIssuesProblemswithRepeatabilityandReproducibilityScenario1
WhenaVGR&RhasnotbeenconductedandwearefalselyacceptingBadPartsVGR&RCorrectedLSLUSLLSLUSLAcceptingmanybadpartsthatshouldhavebeenrejected.FalselyunderestimatedDPMOPoorMSAResults-ImpactonDPMO
Repeatability&ReproducibilityIssuesProblemswithRepeatabilityandReproducibilityScenario2WhenaVGR&RhasnotbeenconductedandwearefalselyrejectingGoodPartsVGR&RCorrectedLSLUSLLSLUSLRejectinggoodpartsthatshouldhavebeenaccepted.FalselyoverestimatingDPMOPoorMSAResults-ImpactonDPMO
GeneralCommentsWhatactionswouldwetakegiventhefollowingFixtheMeasurementSystem,orFixCapabilityLSLUSLLSLUSL*%ContributionMSAScenarios
3%Contribution–10%ToleranceSamplesaredrawnfortheVGR&RthatspanthelongtermvariabilityoftheprocessActionNoactionisrequiredLSLUSLMSAScenarios
45%Contribution–10%ToleranceSamplesaredrawnfortheVGR&Rthatspanthelongtermcapabilityoftheprocess.ActionNoactionisrequiredThereisnoadvantagetoimprovingthisMeasurementSystemasthecapabilityisOutstanding!!!OnlyneedtocalibrateLSLUSLMSAScenarios
50%Contribution–50%ToleranceSamplesaredrawnfortheVGR&Rthatspanthelongtermcapabilityoftheprocess.ActionNeedtofixboththeMeasurementSystemandtheCapabilityFixMeasurementSystemfirstthenCapabilityLSLUSLMSAScenarios
3%Contribution–50%ToleranceSamplesaredrawnfortheVGR&Rthatspanthelongtermcapabilityoftheprocess.ActionNeedtofixboththeMeasurementSystemandtheCapabilityFixCapabilityfirstthenbegintoimprovetheMeasurementSystemLSLUSLAttributeMSA(AGR&R)WhyanAGR&R?Whenthecharacteristicbeingmeasureisnotcontinuousbutdiscrete,forexampleBinary–2levelsPassorFailGoodorBadNominal–NonaturalorderingofthelevelsBlue,black,red,yellowScratch,dent,pitsOrdinal–naturalorderingofthelevelsNone,mildsevereExcellent,aboveaverage,average,belowaverage,poorIfpossibledetermineifacontinuousmeasureisavailableandusethattomeasurethedefect!ObjectiveofanAGR&RToassessyourinspectionorworkmanshipstandardsagainstyourcustomer’srequirementsTodetermineifinspectorsacrossallshifts,allmachines,etc…usethesamecriteriatodetermine“good”from“bad”Toquantifytheabilityofinspectors
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社区建设与管理方案
- 教师继续教育计划
- 国庆节文艺汇演活动方案
- 《第19课 建国以来的重大科技成就》(同步训练)高中历史必修3-人教版-2024-2025学年
- 土地流转承包管理协议
- 商标行政诉讼服务合同
- 社区服务实习基地合作协议书
- 房地产代售协议书
- 跨境电商通关服务合同
- 文化交流项目实施执行合同
- 更年期综合征中西医结合诊疗指南
- 关于医疗事故
- 卷烟营销技能中级培训课件
- 2024年建筑工程行业的合规管理
- 物业管理中的信息化管理
- 托幼机构卫生保健人员考试题库【附答案】
- 《礼仪与修养》 课件 第一课 彬彬有礼 美美与共
- 社会工作伦理课件
- 高中物理选择性必修2教材习题答案
- 2024年一建水利实务真题及答案
- 住院患者静脉血栓栓塞症风险评估工具的应用研究
评论
0/150
提交评论