版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1MeasurementSystemsAnalysisLearningObjectivesTo:UnderstandtheneedforaMeasurementSystemsAnalysis(MSA)UnderstandthecomponentsoftheMeasurementSystemUnderstandthetestsinvolvedinaMSAToexecuteaVariablesGageRepeatability&Reproducibility(VGR&R)Isoplot(continuousdata)AttributeGageRepeatability&Reproducibility(AGR&RLearnhowtofixapoorMeasurementSystemUnderstandhowapoorMeasurementSystemimpactsCapabilityMeasurementSystemAnalysisQuantifywasteIdentifypossibleBoB/WoWleversExperimentIsolateandverifytherootcausebyfocusing&splittingdictionariesusingdataConcludewhatconditionshavetobeimproved/redesignedUpdateMFRGeneratesolutionsVerifysolutionsDefinepermanentcountermeasuresRiskanalysisDescribethemodifiedprocess:newprocessmapUpdateMFRDesigntheimplementationplanDefine/trackactivitiesTrackcountermeasuresimplementationCommunicateandclarifytotheorganisationImproveTrackperformanceUpdateMFREnsurechangesareanchoredintheorganizationTrainallrelevantpeopleStandardizeModifyauditchecklistsTrackimprovedperformanceUpdateMFRAcommonviewofthe‘asis’processandhowwellitisperformingIdentifycriticalcausesand/orlevers(Thevitalfew)DescribeandDesigntheimprovedprocessDrawuptheimplementationplanandintroduceconfirmresultsEstablishcontrolandhandovertoprocessowner.MapMeasureExplore
EvaluateDefine
DescribeImplementImproveControlConformDescribeproblem(oropportunity)andobjectiveMeasurehistoricalperformancetrendsSetupmeasure-mentsystemMapcurrentprocessShareavailableknowledgeandgetacommonviewManagebyfacts,notopinionsStartMFRReportWhyPerformaMeasurementSystemAnalysis(MSA)?Toensurethatthemeasurementsystemisnotasignificantsourceofvariability.TodeterminewhetheractionsarenecessarytorepairorreplacethemeasurementsystemToaccuratelyandpreciselydeterminethetruecapabilityofourprocess.WhatisaMSA?Asetofdesignedexperimentstodeterminewhetherthemeasurementsystemisbothaccurateandprecise.AccuracycomparesthemeasurementsystemaveragetoastandardPrecisionisameasureofthemeasurementsystemvariabilityThereisaMSAforthetwotypesofdataVariables Agageisusedbymanyoperatorstomeasureapartcharacteristictosatisfyacustomerstandard.Attribute Peopleareinspectingpartsoritemstodeterminewhetherthecolorofapart,ascreenprint,fieldsinaform,timeorsomeotherattributeisacceptablecomparedtoacustomerstandard.SomeprojectsrequirecreativitytoconductanMSAOperationalDefinition
EXTREMELYIMPORTANTInanyMSAitisABSOLUTELYCRITICALtowritedownanOPERATIONALDEFINITION:AStandardMethodInmanycasestheOperationalDefinitionincludesanUpperandLowerSpecificationLimitInothercasesitisawrittendefinitionthatdescribesexactlyhowthemeasurementsaretobemade,forexampleAcompanywantsanitemtobedeliveredin3days.Whendoestheclockstartandwhendoestheclockstopt0–CustomerplacesorderwithCustomerServiceRepresentative(CSR)t1–CSRentersorderinsystemt2–Orderisscheduledtobemanufacturedt3–Orderismadet4–Orderisstockedt5–Orderisattheshippingdockreadytobepickedupt6–Orderispickedupt7–Orderisdeliveredt8–Orderisstockedt0t1t2t3t4t5t6t7t8Whoisresponsiblefordeterminingthestandard?Continuous/VariablesMSAWhatistheTrueDPMO?ABlackBeltisinterestedinknowingtheDPMOofthediameterofabatchoflampfilamentscomparedtocustomerspeclimitsShesamples30filamentsandplotsthediametersinanHistogramLSLUSLHowdoweknowthatourmeasurementsystemcanproperlyrejectbadpartsandproperlyacceptgoodparts,suchthatwecanevaluateourtrueDPMO?SourcesofVariabilityObjective-toensurethevariabilityfromthemeasurementsystemislessthansomeacceptablevaluesuchthatwecanassessourtrueprocesscapability.AccuracyandPrecisionwithintheMeasurementSystemSourcesofVariabilitywithintheMeasurementSystemcanbeattributedtoeitherAccuracy–MeasurementSystemaveragesoutlinedbelowinredDiscrimination–MeasurementSystemresolutionoutlinedinblackPrecision–MeasurementSystemvariabilityoutlinedbelowinblueAccuracy
ExplanationAccuracyisameasureofcentrallocationwithrespecttoaknownreferencestandardKnownReferenceStandardProcessAverageAccuracy
BiasMeasurementSystemBias:-Todeterminewhetheranoffsetexistsinthegage,determinedviaa“calibrationprogram”:Amasterpartisidentified10measuresofthemasterpartaremadeandtheaveragevalueiscalculatedTodeterminethebiastheaveragevalueissubtractedfromthemastervalueThegageisoffsetbytheamountofthebias.TruevalueMeasuredvaluesmeasurementbiasAccuracy
BiasExampleABlackBeltneedstoconductaMSAandshefirsttestsforBias.Sheidentifiesamasterpartandthegageusedtomeasurethispart.Themasterpartisknowntobe0.350”.Sheasksanoperatortomeasurethepart10timesandrecordsthesevalues,whichareshownbelow.ShethendeterminestheMeasurementSystemBiasbysubtracttheaverageofthese10measuresfrom0.350”0.350”0.341”0.343”0.330”0.340”0.358”0.352”0.329”0.330”0.348”TheseresultsindicatethatonaveragethemeasurementsystemisBiasedby-0.007”.Thereforesheneedstooffsetthegagebypositive0.007”Accuracy
LinearityMeasurementSystemLinearity:-TheabilityoftheMeasurementSystemtomeasureoveritsoperatingrangewithminimalBiasIdentifymasterpartsthatspantheoperatingrangeofthegageanddeterminethebiasoftheseparts.PlotthedatainascatterplotwheretheX-axisarethemasterpartsandtheY-axisaretherespectivebiasesFitaregressionlinetothedataLinearityResults:R2oftheregressionlinetobeascloseto100%aspossibleTheslopeoftheregressionlinetobeascloseto0aspossibleindicatingnobiasacrosstheoperatingrangeAccuracy
MinitabKeystrokes-LinearityExampleABlackBeltcontinueswithherMSAandconductsalinearitystudy.Sheidentifies5masterpartsthatspantheoperatingrange(2”to10”)ofhergage.Oneoperatormeasuredeachpart12timesandrecordsthedatainMinitab.Gagelin.mtwStat>QualityTools>GageLinearityStudySelectPartandenterin“PartNumbers”SelectMasterandenterin“MasterMeasurements”SelectResponseandenterin“MeasurementData”Determineyourlong-termhistoricaldeviation,multiplyby6andenterinProcessVariationAccuracy
MinitabGraphOutputforLinearitySlopeoftheregressionline*(6*s)100*{Slopeoftheregressionline*(6*s)}R2oftheRegressionlineAveragebiasAveragebias/(6*s)Theslopeoftheregressionlineisdeterminedbydividingthe%linearityby100inthiscaseitisrelativelylowat0.1317TheR2isveryhighindicatingthesystemislinearAccuracy
StabilityStabilityResultsIncontrolcontrolchartIfadatapointisoutofcontrolgagemayrequirecalibration.MeasurementSystemStability–TheamountofvariabilityintheBiasovertime.OnadailyoraweeklybasisstabilityismeasuredbyplottingtheresultsofyourbiasstudyinaControlChart.Accuracy
StabilityExampleTheBlackBeltretrievesthelastthreemonthsofbiasdataasmeasuredonadailybasisbytheQualityControldepartment.SheplotsthisinformationinanIndividualsandMovingRangeChart(I-mR).Theseresultsareshownbelow.Accuracy
StabilityExampleAnoutofcontrolconditionononeofthecontrolchartsisanindicationthatthemethodtocalibratetheMeasurementSystemneedstobeevaluatedDiscriminationDiscrimination–TheabilityoftheMeasurementSystemtodetectadequatechangesinprocessvariationAtaminimumthemeasurementsystemshouldbeabletodiscriminateto1/10thetolerance(UpperSpecification–LowerSpecificationLimit)Ideallywedesiretomeasure1/10theprocessvariationLSL=0.200”LSL=0.300”LSL=0.200”LSL=0.300”DiscriminationItcanbeverycostlytohaveameasurementsystemdiscriminate1/10theProcessVariationLSL=0.200”LSL=0.300”Howexpensivewoulditbeifwewereabletomeasure1/10thelong-termprocessvariationshownabove?PrecisionPrecisionisameasureofvariabilityTestforBias,Linearity,andStabilityensurestheMeasurementSystemisontargetPrecisionensuresthereisminimalvariabilityinthemeasuresAmuchmoredesirablestateWhatistheTrueVariabilityofthePartsbeingMeasured?ABlackBeltneedstoknowtheamountofvariabilityinthediameterofabatchoffilaments30filamentsdiametersareplottedinaHistogramThewidthofthehistogramisassumedtheresultsofthevariabilityinthediameterofthefilaments.Doothersourcesofvariabilityinfluencethehistogram?Precision
Part&MeasurementVariabilityAGageRepeatability&Reproducibility(GR&R)StudyisadesignedexperimentthatpartitionssourcesofvariabilitywithintheMeasurementSystemAGR&RcanbeconductedforbothAttributeandVariablesdataPrecision
GageRepeatability&ReproducibilityTheMeasurementSystemvariabilitycanbefurtherpartitionedintoRepeatability&ReproducibilityPrecision
Repeatability&ReproducibilityRepeatability–DetermineswhetherthevariabilityofthegageisconsistentTheabilityofthegagetoachievethesamemeasuredvaluewhenoneoperatormeasuresthesameparttwice.Reproducibility–Determineswhetherthevariabilitybetweenoperatorsisconsistent.Theabilityofmultipleoperators,whentheytakemultiplemeasuresononepart,toachievethesameaveragevalues.UnderstandingthecontributionfromRepeatability&ReproducibilitycanassistinresolvingsomemeasurementsystemissuesHowMuchVariabilityisAcceptableintheMeasurementSystem?WhenconductingaVGR&RthefollowingratiosareusedtodeterminewhethertheMeasurementSystemisacceptable
%Contribution*
%Study*
%Tolerance*Unacceptable >10% >30% >30%Marginal 3–10% 10–30% 10–30%Excellent <3 <10% <10% *Note:Intheactualformulathevariancesorstandarddeviationsaremultipliedby5.15,whichrepresents99%oftheareaunderanormalcurveHowistheVariabilityinaVGR&RPartitioned?ToconductaVGR&Rthefollowingareidentified:10Partsthatspantherangeofthelong-termvariability2or3OperatorswhousethegageTheGageusedtotakethemeasuresTheExperimentisdesignedasfollows-1123121212PartsOperatorsRepeatMeasures2123121212312312121210partsmeasuredtwicebythreeoperators=60measuresConductingtheVGR&R
SettingUptheMinitabWorksheetAVGR&Rwillbeconductedwith10parts,3operators,2repeats.OpenaMinitabworksheetandtitle3columns,Parts,Operators,andMeasuresForthe“Parts”columnweneedtolist1through10,6timesfor60measuresCalc>MakePatternedData>SimpleSetofnumbersandenterthedataasfollowsConductingtheVGR&R
SettingUptheMinitabWorksheetForthe“Operators”columnweneedtolist1through3,10timeseachandthenlistthesequencetwiceCalc>MakePatternedData>SimpleSetofnumbersandenterthedataasfollowsConductingtheVGR&R
9StepMethodThefollowingstepsareusedtoconductaVGR&R:CalibratethegageSelect10partsthatspantherangeofthelong-termvariabilityoftheprocess.Ifnotpossible,collectpartsoverseveraldays.Identify2or3operatorswhousethegage.ConducttheVGR&RthegageisusedHavethefirstoperatormeasurethepartsinrandomorderandrecordthemeasuresinMinitab.Havethesecondandthirdoperatorsmeasurethepartsinrandomorder.Repeatsteps5and6suchthatalloperatorshavemeasuredeachparttwiceinrandomorder.AnalyzetheresultsinMinitabDrawyourconclusionsandifrequiredtakecorrectiveaction.Let’sassumewehaveconductedaVGR&RandweneedtoanalyzethedataOpenfileVGR&RExample.mtwAnalyzingtheVGR&RData
MinitabKeystrokesToanalyzethedataclickonStat>QualityTools>GR&RStudy(Crossed),thenentertheParts,Operators,andMeasuresinformation.AlwayshaveANOVAclickedonClickon“Options”andenter.2fortolerance,asthatistheUSL–LSLforthischaracteristic.AnalyzingtheVGR&RData
MinitabSessionWindowGageR&RStudy-ANOVAMethodGageR&RforMeasuresTwo-WayANOVATableWithInteractionSourceDFSSMSFP
Parts90.00918160.0010202289.4510.00000Operators20.00011050.000055315.6790.00011Operators*Parts180.00006340.00000351.5420.14308Repeatability300.00006860.0000023Total590.0094242GageR&R %ContributionSourceVarComp(ofVarComp)
TotalGageR&R5.49E-063.14Repeatability2.29E-061.31Reproducibility3.21E-061.83Operators2.59E-061.48Operators*Parts6.20E-070.35Part-To-Part1.69E-0496.86TotalVariation1.75E-04100.00
StdDevStudyVar%StudyVar%ToleranceSource(SD)(5.15*SD)(%SV)(SV/Toler)
TotalGageR&R2.34E-031.21E-0217.726.03Repeatability1.51E-037.79E-0311.433.89Reproducibility1.79E-039.22E-0313.544.61Operators1.61E-038.28E-0312.164.14Operators*Parts7.87E-044.05E-035.952.03Part-To-Part1.30E-026.70E-0298.4233.52TotalVariation1.32E-026.81E-02100.0034.06NumberofDistinctCategories=8Whatdoesallofthismean? ANOVAtable
VarianceComponents PartitioningtheVariability Thissectionderived fromVarianceComponents123Weareinterestedinsections2and3AnalyzingtheVGR&RResults
VarianceComponents %ContributionSourceVarComp(ofVarComp)
TotalGageR&R5.49E-06
3.14
Repeatability2.29E-061.31Reproducibility3.21E-061.83Operators2.59E-061.48Operators*Parts6.20E-070.35Part-To-Part1.69E-0496.86TotalVariation1.75E-04100.001.75E-04=1.69E-04+5.49E-06100%=96.86%+3.14%2.29E-06+3.21E-06
1.31%+1.83%2.59E-06+6.20E-07
1.48%+0.35%* WhentheP-valueintheANOVAtableforReproducibilityis<0.25MinitabwillfurtherpartitionReproducibilityintothatfromtheOperatorandOp*PartInteraction.%ContributionAnalyzingtheVGR&RResults
StandardDeviation %ContributionSourceVarComp(ofVarComp)
TotalGageR&R5.49E-063.14Repeatability2.29E-061.31Reproducibility3.21E-061.83Operators2.59E-061.48Operators*Parts6.20E-070.35Part-To-Part1.69E-0496.86TotalVariation1.75E-04100.00
StdDevStudyVar%StudyVar%ToleranceSource(SD)(5.15*SD)(%SV)(SV/Toler)
TotalGageR&R2.34E-031.21E-0217.726.03
Repeatability1.51E-037.79E-0311.433.89Reproducibility1.79E-039.22E-0313.544.61Operators1.61E-038.28E-0312.164.14Operators*Parts7.87E-044.05E-035.952.03Part-To-Part1.30E-026.70E-0298.4233.52TotalVariation1.32E-026.81E-02100.0034.06NumberofDistinctCategories=812345Variance(s2)StandardDeviation(s)5.15*St.Dev.
(99%areaundernormalcurve)RatiosofSourcesvs.TotalVariationRatiosofSourcesvs.Tolerance%Study%ToleranceAnalyzingtheVGR&RDataThemeasurementsystemisdeemedtobemarginalUnacceptable >10% >30% >30%Marginal 3–10% 10–30% 10–30%Excellent <3 <10% <10%
%Contribution
%Study
%ToleranceSincetheGageismarginal,whatactionshouldwetaketoimprovethegage?AnalyzingtheVGR&RData
MinitabGraphsAnalyzingtheVGR&RGraphswillhelpdetermineareasforimprovement.Wewilllookateachgraphindividually.AnalyzingtheVGR&RResults
MinitabGraphs–ComponentsofVariationThisgraphisabarchartofthedataintheMinitabSessionWindowThisgraphdoesnotprovideuswithanyquantitativeinformationDONOTreadthisgraphtodeterminewhetherthemeasurementsystemisacceptable.READthenumbersdirectlyfromthesessionwindow.AnalyzingtheVGR&RResults
MinitabGraphs–RChartbyOperators
Eachdatapointrepresentstherange(max–min)foreachpartmeasuredtwicebyeachoperator.ThedatapointsarerunintheordertheyareenteredwithintheMinitabworksheet,1-10.Thisgraphrepresentstherepeatabilityofthegage.Wedesireallofthepointsonthisgraphtobewithinthetworedlinesasthisindicatesarepeatablegage.AnalyzingtheVGR&RResults
MinitabGraphs–X-barChartbyOperatorsEachdotrepresentstheaverageofthetwomeasuresbyeachoperatorTheredlines(UpperandLowerControlLimits–calculatedfromtheRchartbyOperators)representsthevariabilityinthegage.Thevariabilityobservedinthisgraphrepresentsthevariabilityintheparts.Wedesirethesedotstobeoutsidetheredlines.ThisindicatesthevariabilityinthepartsisgreaterthanthevariabilityinthegageAnalyzingtheVGR&RResults
MinitabGraphs–ByPartsTheX-axisrepresentsthe10partsthatweremeasuredEachdotrepresentsameasureforthatpart.Eachpartwasmeasuredtwicebythreeoperatorsthereforetherewouldbe6dotsperpartTheredcrossesrepresenttheaverageofsixmeasuresforeachpartTheperfectgraphwouldcontainoneblackdotforeachpartindicatingtheexactsamemeasuresbyeachoperator.AnalyzingtheVGR&RResults
MinitabGraphs–ByOperatorsTheX-axisrepresentsthe3OperatorsEachdotrepresentsameasurebyanoperatorforeverypart.Thereare20measuresperoperator(10partsmeasuredtwice).TheredcrossesrepresentstheaverageofallmeasuresforeachoperatorThevariabilityobservedwithinanoperatorshouldbeduetothevariabilityofthe10partsTheidealgraphwouldhaveallofthedotsforeachoperatoralignedandtheredaveragelinewouldbehorizontal.AnalyzingtheVGR&RResults
MinitabGraphs–Operators*PartsInteractionTheX-axisrepresentsthe10partsThedotsrepresentseachoperatorsaveragemeasureforthe10partsTheidealplotiswhenallthreelines(operators)overlaponeanotherindicatingtheexactsameaveragemeasureforeachpart.Whenthelinesdivergearoundonepartthatisanindicationthattheoperatorsarehavingdifficultymeasuringthatpart.VGR&RConclusionsBasedonthedataintheMinitabSessionwindowthegageismarginallyacceptable.ThevariabilityintheMeasurementSystemappearstobeevenlydividedbetweenRepeatability(1.31%)andReproducibility(1.83%),basedon%ContributionThegreatestopportunityforimprovementappearstobeinReproducibilityspecificallytheOperators(1.48%).ThisisvalidatedbyobservingtheOperators*PartsInteractiongraph.OnaverageOperator3appearstobemeasuringconsistentlylowerthanOperators1and2.NextStepsObserveanddocumentthedifferenceinmethodsbetweenOperators1and2vs.3andwiththeoperatorsdeterminewhoismeasuringmoreaccurately.Identifybestmethodandstandardize.RepeatVGR&RtovalidateVGR&RExerciseObjective–Toconduct,analyze,anddrawconclusionsinaVGR&R.Assembleingroupsof4andidentifyanAdministratorand3Operators.TheVGR&Rwillconsistof3operators,7parts,3repeatmeasures,unlessotherwisenoted.Theadministratorwillcollectfromtheinstructor7partstobemeasuredandthegage.AllparticipantsinthegroupbeginonSlide29andcreatetheMinitabworksheetinordertoconducttheVGR&RandcontinuefromthereDuringtheVGR&R,theadministratorneedstohidethesamplesfromtheoperatorsandtheoperatorsaretomeasuretheminrandomorder.Asoneoperatorismeasuringtheotheroperatorsarerequiredtobeoutoftheroom.Afterallofthedatahasbeencollected,acopyneedstobegiventoeachpersoninthegroupsotheycananalyzethedataindividual.ThendiscussasagrouptodrawconclusionsWhenyouhavecompletedyouranalysiscalltheInstructorovertoreviewyourresultsFixesforaPoorMeasurementSystemDONOTTHROWOUTANYOFTHEPARTSINTHEMSAReviewthedataenteredintoMinitabanddetermineifanynumbersweretransposedorenteredincorrectly,correct,andre-analyzethedata.Ifthereappearstobeoneortwooutliersinthedatasetandnumberswerenottransposedhavetheoperatorsre-measurethepartandreanalyze.ReproducibilityContactSupplieroftoidentifypropermethodologyofusingthegageTraintheOperatorsinacommonmethodologyEnsureanyfixturesrequiredforthetestarecorrectandanynecessarytoolsareavailableEnsurelightingintheareaisadequateRepeatabilityContactSupplierofgageastocorrectSetupofgagePropersoftwaresettingsEnsureyouareusingthepropergageforthecharacteristictobemeasuredRepairthegageBuynewgageFixesforaPoorMeasurementSystem
StopGap-CentralLimitTheorem(CLT)IfafixcannotbeimplementedimmediatelyusetheCLTBytakingmultiplemeasuresandaveragingthesemeasuredwecanreducethevariabilityinthemeasurementsystembyoneoverthesquarerootofthenumberofmeasures–Example–Ameasurementsystemhasbeendeemedunacceptableandanimmediatefixcannotbeimplemented.Haveeachoperatormeasureeachsamplefourtimesandtaketheaverageofthefourmeasures.EntertheseaveragesintoMinitabandanalyzetheVGR&R.IfacceptabletheoperatorsonthefloorwillthenberequiredtotaketheaverageoffourmeasuresandreportthisvalueTheCLTisnotasolutiontoapoorMeasurementSystemItneedstobefixed!!!WhatiftheMSAisaDestructiveTest?Batchesofpartswillbepreparedthatrepresentthelong-termvariabilityoftheprocess.ItisassumedthatthevariabilityofthepartswithinabatchareconsistentAtestisconductedwith3Operators,10parts,2measures,thestepsareasfollows:Prepare10batchesofparts,wherethebatchesspanthelong-termvariabilityoftheprocess.Forthistest6partsshouldbepreparedperbatch.ThefirstoperatormeasuresarandomsamplefromarandombatchandproceedtomeasureonesamplefromeachbatchThesecondandthirdoperatorsmeasureonesampleeachfromeachbatchThefirstoperatorrepeatsbydrawinganothersamplefromeachbatch,asdothesecondandthirdoperators.AnalyzethedatainMinitabusing
Stat>QualityTools>GR&RStudy(Nested)Readsessionwindowandgraphsthesame asGR&R(Crossed)anddrawconclusions inthesamemanner11234562123456BatchesSamplesSamplesPoorMSAResults-ImpactonDPMO
BiasIssuesProblemswithBiasScenario1BiashasnotbeencorrectedandweareacceptingBadPartsBiasCorrectedLSLUSLLSLUSLAcceptingmanybadpartsthatshouldhavebeenrejected.FalselyunderestimatedDPMOBiasisanissuePoorMSAResults-ImpactonDPMO
BiasIssuesProblemswithBiasScenario2BiashasnotbeencorrectedandwearerejectingGoodPartsBiasCorrectedLSLUSLLSLUSLRejectinggoodpartsthatshouldhavebeenaccepted.FalselyoverestimatedDPMOBiasisanissuePoorMSAResults-ImpactonDPMO
Repeatability&ReproducibilityIssuesProblemswithRepeatabilityandReproducibilityScenario1
WhenaVGR&RhasnotbeenconductedandwearefalselyacceptingBadPartsVGR&RCorrectedLSLUSLLSLUSLAcceptingmanybadpartsthatshouldhavebeenrejected.FalselyunderestimatedDPMOPoorMSAResults-ImpactonDPMO
Repeatability&ReproducibilityIssuesProblemswithRepeatabilityandReproducibilityScenario2WhenaVGR&RhasnotbeenconductedandwearefalselyrejectingGoodPartsVGR&RCorrectedLSLUSLLSLUSLRejectinggoodpartsthatshouldhavebeenaccepted.FalselyoverestimatingDPMOPoorMSAResults-ImpactonDPMO
GeneralCommentsWhatactionswouldwetakegiventhefollowingFixtheMeasurementSystem,orFixCapabilityLSLUSLLSLUSL*%ContributionMSAScenarios
3%Contribution–10%ToleranceSamplesaredrawnfortheVGR&RthatspanthelongtermvariabilityoftheprocessActionNoactionisrequiredLSLUSLMSAScenarios
45%Contribution–10%ToleranceSamplesaredrawnfortheVGR&Rthatspanthelongtermcapabilityoftheprocess.ActionNoactionisrequiredThereisnoadvantagetoimprovingthisMeasurementSystemasthecapabilityisOutstanding!!!OnlyneedtocalibrateLSLUSLMSAScenarios
50%Contribution–50%ToleranceSamplesaredrawnfortheVGR&Rthatspanthelongtermcapabilityoftheprocess.ActionNeedtofixboththeMeasurementSystemandtheCapabilityFixMeasurementSystemfirstthenCapabilityLSLUSLMSAScenarios
3%Contribution–50%ToleranceSamplesaredrawnfortheVGR&Rthatspanthelongtermcapabilityoftheprocess.ActionNeedtofixboththeMeasurementSystemandtheCapabilityFixCapabilityfirstthenbegintoimprovetheMeasurementSystemLSLUSLAttributeMSA(AGR&R)WhyanAGR&R?Whenthecharacteristicbeingmeasureisnotcontinuousbutdiscrete,forexampleBinary–2levelsPassorFailGoodorBadNominal–NonaturalorderingofthelevelsBlue,black,red,yellowScratch,dent,pitsOrdinal–naturalorderingofthelevelsNone,mildsevereExcellent,aboveaverage,average,belowaverage,poorIfpossibledetermineifacontinuousmeasureisavailableandusethattomeasurethedefect!ObjectiveofanAGR&RToassessyourinspectionorworkmanshipstandardsagainstyourcustomer’srequirementsTodetermineifinspectorsacrossallshifts,allmachines,etc…usethesamecriteriatodetermine“good”from“bad”Toquantifytheabilityofinspectors
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南京师范大学中北学院《PLC控制技术》2022-2023学年第一学期期末试卷
- 二零二四年度工程合同违约责任合同3篇
- 2024年度版权租赁合同:游戏版权租赁与运营协议3篇
- 2024年度工程设计合同的许可合同3篇
- 春季版九年级英语下册 Unit 5 China and the World Topic 3 Now it is a symbol of England Section C说课稿 (新版)仁爱版
- 三年级语文下册 第五单元 16小真的长头发第1课时说课稿 新人教版
- 二零二四年度股权转让合同标的评估与交易条款3篇
- 2024年度综合安防服务合同(智慧安防系统)
- 2024-2025学年新教材高中化学 专题7 氮与社会可持续发展 第3单元 微专题2 化学中无机框图推断题解题方法说课稿 苏教版必修2
- 二零二四年城市轨道交通建设与运营协议3篇
- GB/T 16604-2017涤纶工业长丝
- 如何打造朋友圈专题培训课件
- 人美版小学美术三年级上册《各种各样的鞋》课课件
- 狂犬疫苗接种知情同意书
- 泌尿外科医疗质量评价体系与考核标准
- 供暖设备产品使用说明书下载电供暖设备
- 2022五年级语文版语文上册期末知识点综合复习
- 幼儿园小班艺术:《春天》 课件
- 粉刷匠-完整版课件
- 安保部绩效考核表
- 小学道德与法治六年级第三单元《单元梳理》
评论
0/150
提交评论