版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1MeasurementSystemsAnalysisLearningObjectivesTo:UnderstandtheneedforaMeasurementSystemsAnalysis(MSA)UnderstandthecomponentsoftheMeasurementSystemUnderstandthetestsinvolvedinaMSAToexecuteaVariablesGageRepeatability&Reproducibility(VGR&R)Isoplot(continuousdata)AttributeGageRepeatability&Reproducibility(AGR&RLearnhowtofixapoorMeasurementSystemUnderstandhowapoorMeasurementSystemimpactsCapabilityMeasurementSystemAnalysisQuantifywasteIdentifypossibleBoB/WoWleversExperimentIsolateandverifytherootcausebyfocusing&splittingdictionariesusingdataConcludewhatconditionshavetobeimproved/redesignedUpdateMFRGeneratesolutionsVerifysolutionsDefinepermanentcountermeasuresRiskanalysisDescribethemodifiedprocess:newprocessmapUpdateMFRDesigntheimplementationplanDefine/trackactivitiesTrackcountermeasuresimplementationCommunicateandclarifytotheorganisationImproveTrackperformanceUpdateMFREnsurechangesareanchoredintheorganizationTrainallrelevantpeopleStandardizeModifyauditchecklistsTrackimprovedperformanceUpdateMFRAcommonviewofthe‘asis’processandhowwellitisperformingIdentifycriticalcausesand/orlevers(Thevitalfew)DescribeandDesigntheimprovedprocessDrawuptheimplementationplanandintroduceconfirmresultsEstablishcontrolandhandovertoprocessowner.MapMeasureExplore
EvaluateDefine
DescribeImplementImproveControlConformDescribeproblem(oropportunity)andobjectiveMeasurehistoricalperformancetrendsSetupmeasure-mentsystemMapcurrentprocessShareavailableknowledgeandgetacommonviewManagebyfacts,notopinionsStartMFRReportWhyPerformaMeasurementSystemAnalysis(MSA)?Toensurethatthemeasurementsystemisnotasignificantsourceofvariability.TodeterminewhetheractionsarenecessarytorepairorreplacethemeasurementsystemToaccuratelyandpreciselydeterminethetruecapabilityofourprocess.WhatisaMSA?Asetofdesignedexperimentstodeterminewhetherthemeasurementsystemisbothaccurateandprecise.AccuracycomparesthemeasurementsystemaveragetoastandardPrecisionisameasureofthemeasurementsystemvariabilityThereisaMSAforthetwotypesofdataVariables Agageisusedbymanyoperatorstomeasureapartcharacteristictosatisfyacustomerstandard.Attribute Peopleareinspectingpartsoritemstodeterminewhetherthecolorofapart,ascreenprint,fieldsinaform,timeorsomeotherattributeisacceptablecomparedtoacustomerstandard.SomeprojectsrequirecreativitytoconductanMSAOperationalDefinition
EXTREMELYIMPORTANTInanyMSAitisABSOLUTELYCRITICALtowritedownanOPERATIONALDEFINITION:AStandardMethodInmanycasestheOperationalDefinitionincludesanUpperandLowerSpecificationLimitInothercasesitisawrittendefinitionthatdescribesexactlyhowthemeasurementsaretobemade,forexampleAcompanywantsanitemtobedeliveredin3days.Whendoestheclockstartandwhendoestheclockstopt0–CustomerplacesorderwithCustomerServiceRepresentative(CSR)t1–CSRentersorderinsystemt2–Orderisscheduledtobemanufacturedt3–Orderismadet4–Orderisstockedt5–Orderisattheshippingdockreadytobepickedupt6–Orderispickedupt7–Orderisdeliveredt8–Orderisstockedt0t1t2t3t4t5t6t7t8Whoisresponsiblefordeterminingthestandard?Continuous/VariablesMSAWhatistheTrueDPMO?ABlackBeltisinterestedinknowingtheDPMOofthediameterofabatchoflampfilamentscomparedtocustomerspeclimitsShesamples30filamentsandplotsthediametersinanHistogramLSLUSLHowdoweknowthatourmeasurementsystemcanproperlyrejectbadpartsandproperlyacceptgoodparts,suchthatwecanevaluateourtrueDPMO?SourcesofVariabilityObjective-toensurethevariabilityfromthemeasurementsystemislessthansomeacceptablevaluesuchthatwecanassessourtrueprocesscapability.AccuracyandPrecisionwithintheMeasurementSystemSourcesofVariabilitywithintheMeasurementSystemcanbeattributedtoeitherAccuracy–MeasurementSystemaveragesoutlinedbelowinredDiscrimination–MeasurementSystemresolutionoutlinedinblackPrecision–MeasurementSystemvariabilityoutlinedbelowinblueAccuracy
ExplanationAccuracyisameasureofcentrallocationwithrespecttoaknownreferencestandardKnownReferenceStandardProcessAverageAccuracy
BiasMeasurementSystemBias:-Todeterminewhetheranoffsetexistsinthegage,determinedviaa“calibrationprogram”:Amasterpartisidentified10measuresofthemasterpartaremadeandtheaveragevalueiscalculatedTodeterminethebiastheaveragevalueissubtractedfromthemastervalueThegageisoffsetbytheamountofthebias.TruevalueMeasuredvaluesmeasurementbiasAccuracy
BiasExampleABlackBeltneedstoconductaMSAandshefirsttestsforBias.Sheidentifiesamasterpartandthegageusedtomeasurethispart.Themasterpartisknowntobe0.350”.Sheasksanoperatortomeasurethepart10timesandrecordsthesevalues,whichareshownbelow.ShethendeterminestheMeasurementSystemBiasbysubtracttheaverageofthese10measuresfrom0.350”0.350”0.341”0.343”0.330”0.340”0.358”0.352”0.329”0.330”0.348”TheseresultsindicatethatonaveragethemeasurementsystemisBiasedby-0.007”.Thereforesheneedstooffsetthegagebypositive0.007”Accuracy
LinearityMeasurementSystemLinearity:-TheabilityoftheMeasurementSystemtomeasureoveritsoperatingrangewithminimalBiasIdentifymasterpartsthatspantheoperatingrangeofthegageanddeterminethebiasoftheseparts.PlotthedatainascatterplotwheretheX-axisarethemasterpartsandtheY-axisaretherespectivebiasesFitaregressionlinetothedataLinearityResults:R2oftheregressionlinetobeascloseto100%aspossibleTheslopeoftheregressionlinetobeascloseto0aspossibleindicatingnobiasacrosstheoperatingrangeAccuracy
MinitabKeystrokes-LinearityExampleABlackBeltcontinueswithherMSAandconductsalinearitystudy.Sheidentifies5masterpartsthatspantheoperatingrange(2”to10”)ofhergage.Oneoperatormeasuredeachpart12timesandrecordsthedatainMinitab.Gagelin.mtwStat>QualityTools>GageLinearityStudySelectPartandenterin“PartNumbers”SelectMasterandenterin“MasterMeasurements”SelectResponseandenterin“MeasurementData”Determineyourlong-termhistoricaldeviation,multiplyby6andenterinProcessVariationAccuracy
MinitabGraphOutputforLinearitySlopeoftheregressionline*(6*s)100*{Slopeoftheregressionline*(6*s)}R2oftheRegressionlineAveragebiasAveragebias/(6*s)Theslopeoftheregressionlineisdeterminedbydividingthe%linearityby100inthiscaseitisrelativelylowat0.1317TheR2isveryhighindicatingthesystemislinearAccuracy
StabilityStabilityResultsIncontrolcontrolchartIfadatapointisoutofcontrolgagemayrequirecalibration.MeasurementSystemStability–TheamountofvariabilityintheBiasovertime.OnadailyoraweeklybasisstabilityismeasuredbyplottingtheresultsofyourbiasstudyinaControlChart.Accuracy
StabilityExampleTheBlackBeltretrievesthelastthreemonthsofbiasdataasmeasuredonadailybasisbytheQualityControldepartment.SheplotsthisinformationinanIndividualsandMovingRangeChart(I-mR).Theseresultsareshownbelow.Accuracy
StabilityExampleAnoutofcontrolconditionononeofthecontrolchartsisanindicationthatthemethodtocalibratetheMeasurementSystemneedstobeevaluatedDiscriminationDiscrimination–TheabilityoftheMeasurementSystemtodetectadequatechangesinprocessvariationAtaminimumthemeasurementsystemshouldbeabletodiscriminateto1/10thetolerance(UpperSpecification–LowerSpecificationLimit)Ideallywedesiretomeasure1/10theprocessvariationLSL=0.200”LSL=0.300”LSL=0.200”LSL=0.300”DiscriminationItcanbeverycostlytohaveameasurementsystemdiscriminate1/10theProcessVariationLSL=0.200”LSL=0.300”Howexpensivewoulditbeifwewereabletomeasure1/10thelong-termprocessvariationshownabove?PrecisionPrecisionisameasureofvariabilityTestforBias,Linearity,andStabilityensurestheMeasurementSystemisontargetPrecisionensuresthereisminimalvariabilityinthemeasuresAmuchmoredesirablestateWhatistheTrueVariabilityofthePartsbeingMeasured?ABlackBeltneedstoknowtheamountofvariabilityinthediameterofabatchoffilaments30filamentsdiametersareplottedinaHistogramThewidthofthehistogramisassumedtheresultsofthevariabilityinthediameterofthefilaments.Doothersourcesofvariabilityinfluencethehistogram?Precision
Part&MeasurementVariabilityAGageRepeatability&Reproducibility(GR&R)StudyisadesignedexperimentthatpartitionssourcesofvariabilitywithintheMeasurementSystemAGR&RcanbeconductedforbothAttributeandVariablesdataPrecision
GageRepeatability&ReproducibilityTheMeasurementSystemvariabilitycanbefurtherpartitionedintoRepeatability&ReproducibilityPrecision
Repeatability&ReproducibilityRepeatability–DetermineswhetherthevariabilityofthegageisconsistentTheabilityofthegagetoachievethesamemeasuredvaluewhenoneoperatormeasuresthesameparttwice.Reproducibility–Determineswhetherthevariabilitybetweenoperatorsisconsistent.Theabilityofmultipleoperators,whentheytakemultiplemeasuresononepart,toachievethesameaveragevalues.UnderstandingthecontributionfromRepeatability&ReproducibilitycanassistinresolvingsomemeasurementsystemissuesHowMuchVariabilityisAcceptableintheMeasurementSystem?WhenconductingaVGR&RthefollowingratiosareusedtodeterminewhethertheMeasurementSystemisacceptable
%Contribution*
%Study*
%Tolerance*Unacceptable >10% >30% >30%Marginal 3–10% 10–30% 10–30%Excellent <3 <10% <10% *Note:Intheactualformulathevariancesorstandarddeviationsaremultipliedby5.15,whichrepresents99%oftheareaunderanormalcurveHowistheVariabilityinaVGR&RPartitioned?ToconductaVGR&Rthefollowingareidentified:10Partsthatspantherangeofthelong-termvariability2or3OperatorswhousethegageTheGageusedtotakethemeasuresTheExperimentisdesignedasfollows-1123121212PartsOperatorsRepeatMeasures2123121212312312121210partsmeasuredtwicebythreeoperators=60measuresConductingtheVGR&R
SettingUptheMinitabWorksheetAVGR&Rwillbeconductedwith10parts,3operators,2repeats.OpenaMinitabworksheetandtitle3columns,Parts,Operators,andMeasuresForthe“Parts”columnweneedtolist1through10,6timesfor60measuresCalc>MakePatternedData>SimpleSetofnumbersandenterthedataasfollowsConductingtheVGR&R
SettingUptheMinitabWorksheetForthe“Operators”columnweneedtolist1through3,10timeseachandthenlistthesequencetwiceCalc>MakePatternedData>SimpleSetofnumbersandenterthedataasfollowsConductingtheVGR&R
9StepMethodThefollowingstepsareusedtoconductaVGR&R:CalibratethegageSelect10partsthatspantherangeofthelong-termvariabilityoftheprocess.Ifnotpossible,collectpartsoverseveraldays.Identify2or3operatorswhousethegage.ConducttheVGR&RthegageisusedHavethefirstoperatormeasurethepartsinrandomorderandrecordthemeasuresinMinitab.Havethesecondandthirdoperatorsmeasurethepartsinrandomorder.Repeatsteps5and6suchthatalloperatorshavemeasuredeachparttwiceinrandomorder.AnalyzetheresultsinMinitabDrawyourconclusionsandifrequiredtakecorrectiveaction.Let’sassumewehaveconductedaVGR&RandweneedtoanalyzethedataOpenfileVGR&RExample.mtwAnalyzingtheVGR&RData
MinitabKeystrokesToanalyzethedataclickonStat>QualityTools>GR&RStudy(Crossed),thenentertheParts,Operators,andMeasuresinformation.AlwayshaveANOVAclickedonClickon“Options”andenter.2fortolerance,asthatistheUSL–LSLforthischaracteristic.AnalyzingtheVGR&RData
MinitabSessionWindowGageR&RStudy-ANOVAMethodGageR&RforMeasuresTwo-WayANOVATableWithInteractionSourceDFSSMSFP
Parts90.00918160.0010202289.4510.00000Operators20.00011050.000055315.6790.00011Operators*Parts180.00006340.00000351.5420.14308Repeatability300.00006860.0000023Total590.0094242GageR&R %ContributionSourceVarComp(ofVarComp)
TotalGageR&R5.49E-063.14Repeatability2.29E-061.31Reproducibility3.21E-061.83Operators2.59E-061.48Operators*Parts6.20E-070.35Part-To-Part1.69E-0496.86TotalVariation1.75E-04100.00
StdDevStudyVar%StudyVar%ToleranceSource(SD)(5.15*SD)(%SV)(SV/Toler)
TotalGageR&R2.34E-031.21E-0217.726.03Repeatability1.51E-037.79E-0311.433.89Reproducibility1.79E-039.22E-0313.544.61Operators1.61E-038.28E-0312.164.14Operators*Parts7.87E-044.05E-035.952.03Part-To-Part1.30E-026.70E-0298.4233.52TotalVariation1.32E-026.81E-02100.0034.06NumberofDistinctCategories=8Whatdoesallofthismean? ANOVAtable
VarianceComponents PartitioningtheVariability Thissectionderived fromVarianceComponents123Weareinterestedinsections2and3AnalyzingtheVGR&RResults
VarianceComponents %ContributionSourceVarComp(ofVarComp)
TotalGageR&R5.49E-06
3.14
Repeatability2.29E-061.31Reproducibility3.21E-061.83Operators2.59E-061.48Operators*Parts6.20E-070.35Part-To-Part1.69E-0496.86TotalVariation1.75E-04100.001.75E-04=1.69E-04+5.49E-06100%=96.86%+3.14%2.29E-06+3.21E-06
1.31%+1.83%2.59E-06+6.20E-07
1.48%+0.35%* WhentheP-valueintheANOVAtableforReproducibilityis<0.25MinitabwillfurtherpartitionReproducibilityintothatfromtheOperatorandOp*PartInteraction.%ContributionAnalyzingtheVGR&RResults
StandardDeviation %ContributionSourceVarComp(ofVarComp)
TotalGageR&R5.49E-063.14Repeatability2.29E-061.31Reproducibility3.21E-061.83Operators2.59E-061.48Operators*Parts6.20E-070.35Part-To-Part1.69E-0496.86TotalVariation1.75E-04100.00
StdDevStudyVar%StudyVar%ToleranceSource(SD)(5.15*SD)(%SV)(SV/Toler)
TotalGageR&R2.34E-031.21E-0217.726.03
Repeatability1.51E-037.79E-0311.433.89Reproducibility1.79E-039.22E-0313.544.61Operators1.61E-038.28E-0312.164.14Operators*Parts7.87E-044.05E-035.952.03Part-To-Part1.30E-026.70E-0298.4233.52TotalVariation1.32E-026.81E-02100.0034.06NumberofDistinctCategories=812345Variance(s2)StandardDeviation(s)5.15*St.Dev.
(99%areaundernormalcurve)RatiosofSourcesvs.TotalVariationRatiosofSourcesvs.Tolerance%Study%ToleranceAnalyzingtheVGR&RDataThemeasurementsystemisdeemedtobemarginalUnacceptable >10% >30% >30%Marginal 3–10% 10–30% 10–30%Excellent <3 <10% <10%
%Contribution
%Study
%ToleranceSincetheGageismarginal,whatactionshouldwetaketoimprovethegage?AnalyzingtheVGR&RData
MinitabGraphsAnalyzingtheVGR&RGraphswillhelpdetermineareasforimprovement.Wewilllookateachgraphindividually.AnalyzingtheVGR&RResults
MinitabGraphs–ComponentsofVariationThisgraphisabarchartofthedataintheMinitabSessionWindowThisgraphdoesnotprovideuswithanyquantitativeinformationDONOTreadthisgraphtodeterminewhetherthemeasurementsystemisacceptable.READthenumbersdirectlyfromthesessionwindow.AnalyzingtheVGR&RResults
MinitabGraphs–RChartbyOperators
Eachdatapointrepresentstherange(max–min)foreachpartmeasuredtwicebyeachoperator.ThedatapointsarerunintheordertheyareenteredwithintheMinitabworksheet,1-10.Thisgraphrepresentstherepeatabilityofthegage.Wedesireallofthepointsonthisgraphtobewithinthetworedlinesasthisindicatesarepeatablegage.AnalyzingtheVGR&RResults
MinitabGraphs–X-barChartbyOperatorsEachdotrepresentstheaverageofthetwomeasuresbyeachoperatorTheredlines(UpperandLowerControlLimits–calculatedfromtheRchartbyOperators)representsthevariabilityinthegage.Thevariabilityobservedinthisgraphrepresentsthevariabilityintheparts.Wedesirethesedotstobeoutsidetheredlines.ThisindicatesthevariabilityinthepartsisgreaterthanthevariabilityinthegageAnalyzingtheVGR&RResults
MinitabGraphs–ByPartsTheX-axisrepresentsthe10partsthatweremeasuredEachdotrepresentsameasureforthatpart.Eachpartwasmeasuredtwicebythreeoperatorsthereforetherewouldbe6dotsperpartTheredcrossesrepresenttheaverageofsixmeasuresforeachpartTheperfectgraphwouldcontainoneblackdotforeachpartindicatingtheexactsamemeasuresbyeachoperator.AnalyzingtheVGR&RResults
MinitabGraphs–ByOperatorsTheX-axisrepresentsthe3OperatorsEachdotrepresentsameasurebyanoperatorforeverypart.Thereare20measuresperoperator(10partsmeasuredtwice).TheredcrossesrepresentstheaverageofallmeasuresforeachoperatorThevariabilityobservedwithinanoperatorshouldbeduetothevariabilityofthe10partsTheidealgraphwouldhaveallofthedotsforeachoperatoralignedandtheredaveragelinewouldbehorizontal.AnalyzingtheVGR&RResults
MinitabGraphs–Operators*PartsInteractionTheX-axisrepresentsthe10partsThedotsrepresentseachoperatorsaveragemeasureforthe10partsTheidealplotiswhenallthreelines(operators)overlaponeanotherindicatingtheexactsameaveragemeasureforeachpart.Whenthelinesdivergearoundonepartthatisanindicationthattheoperatorsarehavingdifficultymeasuringthatpart.VGR&RConclusionsBasedonthedataintheMinitabSessionwindowthegageismarginallyacceptable.ThevariabilityintheMeasurementSystemappearstobeevenlydividedbetweenRepeatability(1.31%)andReproducibility(1.83%),basedon%ContributionThegreatestopportunityforimprovementappearstobeinReproducibilityspecificallytheOperators(1.48%).ThisisvalidatedbyobservingtheOperators*PartsInteractiongraph.OnaverageOperator3appearstobemeasuringconsistentlylowerthanOperators1and2.NextStepsObserveanddocumentthedifferenceinmethodsbetweenOperators1and2vs.3andwiththeoperatorsdeterminewhoismeasuringmoreaccurately.Identifybestmethodandstandardize.RepeatVGR&RtovalidateVGR&RExerciseObjective–Toconduct,analyze,anddrawconclusionsinaVGR&R.Assembleingroupsof4andidentifyanAdministratorand3Operators.TheVGR&Rwillconsistof3operators,7parts,3repeatmeasures,unlessotherwisenoted.Theadministratorwillcollectfromtheinstructor7partstobemeasuredandthegage.AllparticipantsinthegroupbeginonSlide29andcreatetheMinitabworksheetinordertoconducttheVGR&RandcontinuefromthereDuringtheVGR&R,theadministratorneedstohidethesamplesfromtheoperatorsandtheoperatorsaretomeasuretheminrandomorder.Asoneoperatorismeasuringtheotheroperatorsarerequiredtobeoutoftheroom.Afterallofthedatahasbeencollected,acopyneedstobegiventoeachpersoninthegroupsotheycananalyzethedataindividual.ThendiscussasagrouptodrawconclusionsWhenyouhavecompletedyouranalysiscalltheInstructorovertoreviewyourresultsFixesforaPoorMeasurementSystemDONOTTHROWOUTANYOFTHEPARTSINTHEMSAReviewthedataenteredintoMinitabanddetermineifanynumbersweretransposedorenteredincorrectly,correct,andre-analyzethedata.Ifthereappearstobeoneortwooutliersinthedatasetandnumberswerenottransposedhavetheoperatorsre-measurethepartandreanalyze.ReproducibilityContactSupplieroftoidentifypropermethodologyofusingthegageTraintheOperatorsinacommonmethodologyEnsureanyfixturesrequiredforthetestarecorrectandanynecessarytoolsareavailableEnsurelightingintheareaisadequateRepeatabilityContactSupplierofgageastocorrectSetupofgagePropersoftwaresettingsEnsureyouareusingthepropergageforthecharacteristictobemeasuredRepairthegageBuynewgageFixesforaPoorMeasurementSystem
StopGap-CentralLimitTheorem(CLT)IfafixcannotbeimplementedimmediatelyusetheCLTBytakingmultiplemeasuresandaveragingthesemeasuredwecanreducethevariabilityinthemeasurementsystembyoneoverthesquarerootofthenumberofmeasures–Example–Ameasurementsystemhasbeendeemedunacceptableandanimmediatefixcannotbeimplemented.Haveeachoperatormeasureeachsamplefourtimesandtaketheaverageofthefourmeasures.EntertheseaveragesintoMinitabandanalyzetheVGR&R.IfacceptabletheoperatorsonthefloorwillthenberequiredtotaketheaverageoffourmeasuresandreportthisvalueTheCLTisnotasolutiontoapoorMeasurementSystemItneedstobefixed!!!WhatiftheMSAisaDestructiveTest?Batchesofpartswillbepreparedthatrepresentthelong-termvariabilityoftheprocess.ItisassumedthatthevariabilityofthepartswithinabatchareconsistentAtestisconductedwith3Operators,10parts,2measures,thestepsareasfollows:Prepare10batchesofparts,wherethebatchesspanthelong-termvariabilityoftheprocess.Forthistest6partsshouldbepreparedperbatch.ThefirstoperatormeasuresarandomsamplefromarandombatchandproceedtomeasureonesamplefromeachbatchThesecondandthirdoperatorsmeasureonesampleeachfromeachbatchThefirstoperatorrepeatsbydrawinganothersamplefromeachbatch,asdothesecondandthirdoperators.AnalyzethedatainMinitabusing
Stat>QualityTools>GR&RStudy(Nested)Readsessionwindowandgraphsthesame asGR&R(Crossed)anddrawconclusions inthesamemanner11234562123456BatchesSamplesSamplesPoorMSAResults-ImpactonDPMO
BiasIssuesProblemswithBiasScenario1BiashasnotbeencorrectedandweareacceptingBadPartsBiasCorrectedLSLUSLLSLUSLAcceptingmanybadpartsthatshouldhavebeenrejected.FalselyunderestimatedDPMOBiasisanissuePoorMSAResults-ImpactonDPMO
BiasIssuesProblemswithBiasScenario2BiashasnotbeencorrectedandwearerejectingGoodPartsBiasCorrectedLSLUSLLSLUSLRejectinggoodpartsthatshouldhavebeenaccepted.FalselyoverestimatedDPMOBiasisanissuePoorMSAResults-ImpactonDPMO
Repeatability&ReproducibilityIssuesProblemswithRepeatabilityandReproducibilityScenario1
WhenaVGR&RhasnotbeenconductedandwearefalselyacceptingBadPartsVGR&RCorrectedLSLUSLLSLUSLAcceptingmanybadpartsthatshouldhavebeenrejected.FalselyunderestimatedDPMOPoorMSAResults-ImpactonDPMO
Repeatability&ReproducibilityIssuesProblemswithRepeatabilityandReproducibilityScenario2WhenaVGR&RhasnotbeenconductedandwearefalselyrejectingGoodPartsVGR&RCorrectedLSLUSLLSLUSLRejectinggoodpartsthatshouldhavebeenaccepted.FalselyoverestimatingDPMOPoorMSAResults-ImpactonDPMO
GeneralCommentsWhatactionswouldwetakegiventhefollowingFixtheMeasurementSystem,orFixCapabilityLSLUSLLSLUSL*%ContributionMSAScenarios
3%Contribution–10%ToleranceSamplesaredrawnfortheVGR&RthatspanthelongtermvariabilityoftheprocessActionNoactionisrequiredLSLUSLMSAScenarios
45%Contribution–10%ToleranceSamplesaredrawnfortheVGR&Rthatspanthelongtermcapabilityoftheprocess.ActionNoactionisrequiredThereisnoadvantagetoimprovingthisMeasurementSystemasthecapabilityisOutstanding!!!OnlyneedtocalibrateLSLUSLMSAScenarios
50%Contribution–50%ToleranceSamplesaredrawnfortheVGR&Rthatspanthelongtermcapabilityoftheprocess.ActionNeedtofixboththeMeasurementSystemandtheCapabilityFixMeasurementSystemfirstthenCapabilityLSLUSLMSAScenarios
3%Contribution–50%ToleranceSamplesaredrawnfortheVGR&Rthatspanthelongtermcapabilityoftheprocess.ActionNeedtofixboththeMeasurementSystemandtheCapabilityFixCapabilityfirstthenbegintoimprovetheMeasurementSystemLSLUSLAttributeMSA(AGR&R)WhyanAGR&R?Whenthecharacteristicbeingmeasureisnotcontinuousbutdiscrete,forexampleBinary–2levelsPassorFailGoodorBadNominal–NonaturalorderingofthelevelsBlue,black,red,yellowScratch,dent,pitsOrdinal–naturalorderingofthelevelsNone,mildsevereExcellent,aboveaverage,average,belowaverage,poorIfpossibledetermineifacontinuousmeasureisavailableandusethattomeasurethedefect!ObjectiveofanAGR&RToassessyourinspectionorworkmanshipstandardsagainstyourcustomer’srequirementsTodetermineifinspectorsacrossallshifts,allmachines,etc…usethesamecriteriatodetermine“good”from“bad”Toquantifytheabilityofinspectors
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电梯课程设计范文
- 舞蹈机构结业课程设计
- 统编版七年级语文上册《5 秋天的怀念》-教学设计
- 游戏行业销售人员工作总结
- 自闭症科护士工作总结
- 2024年研学旅行指导师考试题库(含答案)
- 2023-2024学年辽宁省大连二十四中高一(下)期中语文试卷
- 美发沙龙营业员技巧总结
- 2024年认识星期教案
- 农村安装雨棚材料合同(2篇)
- 胰岛素抵抗与神经系统疾病的关系
- CBL胸腔穿刺教学设计
- Z矩阵、Y矩阵、A矩阵、S矩阵、T矩阵定义、推导及转换公式
- 软件工程填空题(18套试题与答案)
- 中美欧规范桩基承载力计算设计对比
- 动机式访谈法:改变从激发内心开始
- 瞬时单位线法计算洪水
- 2023-2024学年阿勒泰地区三年级数学第一学期期末统考试题含答案
- 经典红歌歌谱100首-
- 单位红头文件模板(各类通知、任命通知公函红头文件)
- Linux操作系统应用(麒麟系统)PPT完整全套教学课件
评论
0/150
提交评论