


付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
TR算法在某大型变风量空调系统变静压控制法中的应用AbstractTheTRalgorithm,alsoknownastheTrustRegionalgorithm,isapowerfuloptimizationmethodthathasbeenextensivelystudiedandappliedinvariousfields.Inthecontextofvariableairvolume(VAV)airconditioningsystems,theTRalgorithmhasemergedasapromisingapproachforcontrollingthestaticpressureandachievingefficientandenergy-savingoperation.ThispaperprovidesanoverviewoftheTRalgorithm,itstheoreticalfoundation,anditspracticalapplicationsinVAVairconditioningsystems.WehighlighttheadvantagesandchallengesofusingtheTRalgorithmforVAVcontrol,anddiscusssomeoftherecentresearchprogressandfutureopportunities.IntroductionVAVairconditioningsystemsarewidelyusedincommercialandindustrialbuildingstoprovidecomfortableindoorenvironmentsandimproveenergyefficiency.ThebasicprincipleofVAVcontrolistoadjusttheflowrateoftheairsupplytomatchtheactualdemandofthespace,whichisusuallymeasuredbytemperatureandhumiditysensors.Inadditiontoflowratecontrol,VAVsystemsalsoneedtomaintainthestaticpressureintheductworkwithinacertainrangetoensurestableandreliableoperationoftheairdistributionsystem.StaticpressurecontrolinVAVsystemsisachallengingtaskduetothenonlinearandtime-varyingcharacteristicsofthesystem.Traditionalcontrolmethods,suchasproportional-integral-derivative(PID)controlandfuzzylogiccontrol,havelimitationsindealingwiththecomplexdynamicsanduncertaintiesoftheVAVsystem.TheTRalgorithm,ontheotherhand,isapromisingoptimizationapproachthatcanhandlenonlinearityanduncertaintywithouttheneedfordetailedsystemmodeling.TRAlgorithmBasicsTheTRalgorithmisatypeofoptimizationmethodthatiterativelysolvesasequenceofsubproblemswithinatrustregion,whichisaregionaroundthecurrentpointintheoptimizationspace.Theobjectivefunctionisapproximatedbyaquadraticmodelderivedfromthefirstandsecond-orderderivativesofthefunctionatthecurrentpoint,andthequadraticmodelisusedtocalculatethenextiteratewithinthetrustregion.Thesizeofthetrustregionisadjustedadaptivelybasedontheperformanceofthequadraticmodelandtheoriginalobjectivefunction.TheTRalgorithmhastheadvantagesofconvergence,robustness,andglobaloptimization,andcanhandleawiderangeofoptimizationproblems,includingnonlinear,nonconvex,andnonsmoothproblems.ApplicationinVAVAirConditioningSystemsTheTRalgorithmhasbeenappliedtoVAVairconditioningsystemsinrecentyearstocontrolthestaticpressureandimproveenergyefficiency.ThebasicideaistousetheTRalgorithmtoadjustthesetpointofthestaticpressurecontrollerbasedonthemeasuredflowrate,temperature,andhumiditydata.TheTRalgorithmcanhandlethenonlinearandtime-varyingcharacteristicsoftheVAVsystem,andcanadaptivelyadjustthesetpointtomaintainthestaticpressurewithinacertainrangewhileminimizingtheenergyconsumptionoftheairdistributionsystem.OneofthechallengesofusingtheTRalgorithminVAVcontrolisthedeterminationofthetrustregionsize.Asmalltrustregionsizemaycausethealgorithmtoconvergeslowlyorprematurely,whilealargetrustregionsizemayleadtoinstabilityoroscillations.Toaddressthisissue,researchershaveproposedvariousmethodstoadaptivelyadjustthetrustregionsizebasedonthemeasurementoftheperformanceandfeasibilityofthecurrentsolution.Anotherchallengeistheselectionoftheobjectivefunctionandtheconstraints.Theobjectivefunctionshouldreflectthetrade-offbetweentheenergyconsumptionandthestaticpressuredeviation,whiletheconstraintsshouldensurethefeasibilityandsafetyoftheairdistributionsystem.Researchershavepresenteddifferentobjectivefunctionsandconstraintsbasedontheirassumptionsandpreferences,suchasthequadraticcostfunction,theweightedsumofcostanddeviation,andtheprobabilisticconstraint-basedapproach.ConclusionandOutlookTheTRalgorithmisapowerfuloptimizationmethodthathasshowngreatpotentialinVAVcontrolforthestaticpressureoptimization.TheTRalgorithmcanhandlethenonlinearandtime-varyingcharacteristicsoftheVAVsystem,andcanadaptivelyadjustthesetpointtomaintainthestaticpressurewithinacertainrangewhileminimizingtheenergyconsumptionoftheairdistributionsystem.However,therearestillsomechallengesandopenissuesthatneedtobeaddressedinthefutureresearch,suchastherobustnessandadaptivityofthetrustregionsize,theselectionoftheobjectivefunctionandtheconstraints,andtheintegrationwithothercontrolstrategiessuchasmodelpredictivecontrolandreinforcementlearning.Furtherresearchintheseareasmayleadtomoreefficient,reliable,andintelligentVAVcontrolsystems.References1.Niu,Y.,&Liu,Y.(2020).StaticpressureoptimizationcontrolofVAVairconditioningsystembasedonTRmethod.BuildingServicesEngineeringResearchandTechnology,41(2),169-191.2.Yang,X.,Chen,N.,&Wang,Y.(2020).Aprobability-constrainedtrustregionmethodforstaticpressureoptimizationinVAVairconditioningsystems.BuildingSimulation,13(6),1251-1266.3.Wang,Y.,Liao,S.,&Liang,J.(2018).TrustregionalgorithmsforHVACsystemoptimization:Areview.EnergyandBuildings,173,214-228.4.Yang,X.,Chen,N.,Wang,Y.,&Li,W.(2019).A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 洗手间装修出租合同范本
- 黑龙江省第三方协议合同
- 游泳机构合作合同协议书
- 粘土配方设备转让协议书
- 肋骨骨折工伤补偿协议书
- 汽车保险拍卖协议书模板
- 生意中介服务费合同范本
- 门面出租电子档合同范本
- 股份回购如何写合同协议
- 泰州学院食堂承包协议书
- 护理缺陷纠纷登记报告制度
- 2025年数智采购供应链发展报告
- 吉林省2025年初中学业水平考试(中考)语文真题试卷(含答案)
- 山西烟草专卖局考试题库2024
- (2025)新版gcp考试题库附答案
- 药物性肝损害的护理查房
- 电厂信息安全管理制度
- 公司自动化项目管理制度
- 2024江西建设职业技术学院招聘笔试真题附答案详解
- 2025-2030年中国校准即服务行业市场现状供需分析及投资评估规划分析研究报告
- 学为中心理念下小学音乐教学实施策略
评论
0/150
提交评论