付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
TR算法在某大型变风量空调系统变静压控制法中的应用AbstractTheTRalgorithm,alsoknownastheTrustRegionalgorithm,isapowerfuloptimizationmethodthathasbeenextensivelystudiedandappliedinvariousfields.Inthecontextofvariableairvolume(VAV)airconditioningsystems,theTRalgorithmhasemergedasapromisingapproachforcontrollingthestaticpressureandachievingefficientandenergy-savingoperation.ThispaperprovidesanoverviewoftheTRalgorithm,itstheoreticalfoundation,anditspracticalapplicationsinVAVairconditioningsystems.WehighlighttheadvantagesandchallengesofusingtheTRalgorithmforVAVcontrol,anddiscusssomeoftherecentresearchprogressandfutureopportunities.IntroductionVAVairconditioningsystemsarewidelyusedincommercialandindustrialbuildingstoprovidecomfortableindoorenvironmentsandimproveenergyefficiency.ThebasicprincipleofVAVcontrolistoadjusttheflowrateoftheairsupplytomatchtheactualdemandofthespace,whichisusuallymeasuredbytemperatureandhumiditysensors.Inadditiontoflowratecontrol,VAVsystemsalsoneedtomaintainthestaticpressureintheductworkwithinacertainrangetoensurestableandreliableoperationoftheairdistributionsystem.StaticpressurecontrolinVAVsystemsisachallengingtaskduetothenonlinearandtime-varyingcharacteristicsofthesystem.Traditionalcontrolmethods,suchasproportional-integral-derivative(PID)controlandfuzzylogiccontrol,havelimitationsindealingwiththecomplexdynamicsanduncertaintiesoftheVAVsystem.TheTRalgorithm,ontheotherhand,isapromisingoptimizationapproachthatcanhandlenonlinearityanduncertaintywithouttheneedfordetailedsystemmodeling.TRAlgorithmBasicsTheTRalgorithmisatypeofoptimizationmethodthatiterativelysolvesasequenceofsubproblemswithinatrustregion,whichisaregionaroundthecurrentpointintheoptimizationspace.Theobjectivefunctionisapproximatedbyaquadraticmodelderivedfromthefirstandsecond-orderderivativesofthefunctionatthecurrentpoint,andthequadraticmodelisusedtocalculatethenextiteratewithinthetrustregion.Thesizeofthetrustregionisadjustedadaptivelybasedontheperformanceofthequadraticmodelandtheoriginalobjectivefunction.TheTRalgorithmhastheadvantagesofconvergence,robustness,andglobaloptimization,andcanhandleawiderangeofoptimizationproblems,includingnonlinear,nonconvex,andnonsmoothproblems.ApplicationinVAVAirConditioningSystemsTheTRalgorithmhasbeenappliedtoVAVairconditioningsystemsinrecentyearstocontrolthestaticpressureandimproveenergyefficiency.ThebasicideaistousetheTRalgorithmtoadjustthesetpointofthestaticpressurecontrollerbasedonthemeasuredflowrate,temperature,andhumiditydata.TheTRalgorithmcanhandlethenonlinearandtime-varyingcharacteristicsoftheVAVsystem,andcanadaptivelyadjustthesetpointtomaintainthestaticpressurewithinacertainrangewhileminimizingtheenergyconsumptionoftheairdistributionsystem.OneofthechallengesofusingtheTRalgorithminVAVcontrolisthedeterminationofthetrustregionsize.Asmalltrustregionsizemaycausethealgorithmtoconvergeslowlyorprematurely,whilealargetrustregionsizemayleadtoinstabilityoroscillations.Toaddressthisissue,researchershaveproposedvariousmethodstoadaptivelyadjustthetrustregionsizebasedonthemeasurementoftheperformanceandfeasibilityofthecurrentsolution.Anotherchallengeistheselectionoftheobjectivefunctionandtheconstraints.Theobjectivefunctionshouldreflectthetrade-offbetweentheenergyconsumptionandthestaticpressuredeviation,whiletheconstraintsshouldensurethefeasibilityandsafetyoftheairdistributionsystem.Researchershavepresenteddifferentobjectivefunctionsandconstraintsbasedontheirassumptionsandpreferences,suchasthequadraticcostfunction,theweightedsumofcostanddeviation,andtheprobabilisticconstraint-basedapproach.ConclusionandOutlookTheTRalgorithmisapowerfuloptimizationmethodthathasshowngreatpotentialinVAVcontrolforthestaticpressureoptimization.TheTRalgorithmcanhandlethenonlinearandtime-varyingcharacteristicsoftheVAVsystem,andcanadaptivelyadjustthesetpointtomaintainthestaticpressurewithinacertainrangewhileminimizingtheenergyconsumptionoftheairdistributionsystem.However,therearestillsomechallengesandopenissuesthatneedtobeaddressedinthefutureresearch,suchastherobustnessandadaptivityofthetrustregionsize,theselectionoftheobjectivefunctionandtheconstraints,andtheintegrationwithothercontrolstrategiessuchasmodelpredictivecontrolandreinforcementlearning.Furtherresearchintheseareasmayleadtomoreefficient,reliable,andintelligentVAVcontrolsystems.References1.Niu,Y.,&Liu,Y.(2020).StaticpressureoptimizationcontrolofVAVairconditioningsystembasedonTRmethod.BuildingServicesEngineeringResearchandTechnology,41(2),169-191.2.Yang,X.,Chen,N.,&Wang,Y.(2020).Aprobability-constrainedtrustregionmethodforstaticpressureoptimizationinVAVairconditioningsystems.BuildingSimulation,13(6),1251-1266.3.Wang,Y.,Liao,S.,&Liang,J.(2018).TrustregionalgorithmsforHVACsystemoptimization:Areview.EnergyandBuildings,173,214-228.4.Yang,X.,Chen,N.,Wang,Y.,&Li,W.(2019).A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025重庆大学输变电装备技术全国重点实验室劳务派遣项目研究人员招聘(长期有效)笔试重点试题及答案解析
- 2025年农产品跨境电商供应链平台构建与技术创新可行性分析报告
- 2025福建医科大学安全保卫工作人员招聘2人(十四)考试核心试题及答案解析
- 2025山东阳昇甄选产业运营有限公司选聘7人考试重点题库及答案解析
- 2025年共享经济平台商业模式创新报告
- 2026天津市和平区事业单位招聘38人考试核心题库及答案解析
- 2025重庆市铜梁区虎峰镇人民政府公益性岗位招聘2人备考核心题库及答案解析
- 武胜县嘉陵水利集团有限公司公开招聘3名工作人员考试核心题库及答案解析
- 2025西安市浐灞第一幼儿园招聘出纳备考核心题库及答案解析
- 2025重庆市长寿区城市管理服务中心招聘数字城管工作人员3人考试重点试题及答案解析
- 2025年登高证练习题及答案
- 汽车轮胎维护课件
- 【新教材】2025-2026学年华东师大版(2024)体育与健康二年级全一册教案(教学设计)
- 2025年教科版小学科学《水》单元综合测试卷含答案
- 四川省成都市蓉城名校联盟2026接高三上学期第一次联合诊断性考试政治试卷(含答案)
- 录音声学基础课件
- 江苏省淮安市2025年中考英语真题附真题答案
- 湖南省高职单招职业适应性测试考试题库及答案
- 急性高甘油三酯血症胰腺炎康复期管理2025
- 景区冬季安全培训课件
- 新的教育政策分析
评论
0/150
提交评论