版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省清原中学2024届数学高二上期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知空间向量,,且与互相垂直,则k的值是()A.1 B.C. D.2.若正实数、满足,且不等式有解,则实数取值范围是()A.或 B.或C. D.3.已知,是双曲线的左,右焦点,经过点且与x轴垂直的直线与双曲线的一条渐近线相交于点A,且A在第三象限,四边形为平行四边形,为直线的倾斜角,若,则该双曲线离心率的取值范围是()A. B.C. D.4.用1,2,3,4这4个数字可写出()个没有重复数字的三位数A.24 B.12C.81 D.645.在某次赛车中,名参赛选手的成绩(单位:)全部介于到之间(包括和),将比赛成绩分为五组:第一组,第二组,···,第五组,其频率分布直方图如图所示.若成绩在内的选手可获奖,则这名选手中获奖的人数为A. B.C. D.6.某班级从5名同学中挑出2名同学进行大扫除,若小王和小张在这5名同学之中,则小王和小张都没有被挑出的概率为()A. B.C. D.7.如图,在平行六面体中,AC与BD的交点为M,设,,,则下列向量中与相等的向量是()A. B.C. D.8.为迎接2022年冬奥会,某校在体育冰球课上加强冰球射门训练,现从甲、乙两队中各选出5名球员,并分别将他们依次编号为1,2,3,4,5进行射门训练,他们的进球次数如折线图所示,则在这次训练中以下说法正确的是()A.甲队球员进球的中位数比乙队大 B.乙队球员进球的中位数比甲队大C.乙队球员进球水平比甲队稳定 D.甲队球员进球数的极差比乙队小9.人教A版选择性必修二教材的封面图案是斐波那契螺旋线,它被誉为自然界最完美的“黄金螺旋”,自然界存在很多斐波那契螺旋线的图案,例如向日葵、鹦鹉螺等.斐波那契螺旋线的画法是:以斐波那契数1,1,2,3,5,8,…为边长的正方形拼成长方形,然后在每个正方形中画一个圆心角为90°的圆弧,这些圆弧所连起来的弧线就是斐波那契螺旋线.下图为该螺旋线在正方形边长为1,1,2,3,5,8的部分,如图建立平面直角坐标系(规定小方格的边长为1),则接下来的一段圆弧所在圆的方程为()A. B.C. D.10.命题“若,则”的逆否命题是()A.若,则 B.若,则C.若,则 D.若,则11.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C. D.12.已知圆与直线至少有一个公共点,则的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设双曲线(0<a<b)的半焦距为c,直线l过(a,0),(0,b)两点,且原点到直线l的距离为c,求双曲线的离心率14.已知椭圆的离心率为.(1)证明:;(2)若点在椭圆的内部,过点的直线交椭圆于、两点,为线段的中点,且.①求直线的方程;②求椭圆的标准方程.15.设函数,若存在实数使得成立,则的取值范围是__________.16.已知点,圆:.若过点的圆的切线只有一条,求这条切线方程____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆的圆心在直线上,且经过点和.(1)求圆的标准方程;(2)若过点且斜率存在的直线与圆交于,两点,且,求直线的方程.18.(12分)如图,在正三棱柱中,,,,分别为,,的中点(1)证明:(2)求平面与平面所成锐二面角的余弦值19.(12分)已知动圆过点且动圆内切于定圆:记动圆圆心的轨迹为曲线.(1)求曲线的方程;(2)若、是曲线上两点,点满足求直线的方程.20.(12分)已知在平面直角坐标系中,圆A:的圆心为A,过点B(,0)任作直线l交圆A于点C、D,过点B作与AD平行的直线交AC于点E.(1)求动点E的轨迹方程;(2)设动点E的轨迹与y轴正半轴交于点P,过点P且斜率为k1,k2的两直线交动点E的轨迹于M、N两点(异于点P),若,证明:直线MN过定点.21.(12分)已知函数,曲线y=f(x)在点(0,4)处的切线方程为(1)求a,b的值;(2)求f(x)的极大值22.(10分)浙江省新高考采用“3+3”模式,其中语文、数学、外语三科为必考科目,另外考生根据自己实际需要在政治、历史、地理、物理、化学、生物、技术7门科目中自选3门参加考试.下面是某校高一200名学生在一次检测中的物理、化学、生物三科总分成绩,以组距20分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如下图所示(1)求频率分布直方图中的值;(2)由频率分布直方图,求物理、化学、生物三科总分成绩的第60百分位数;(3)若小明决定从“物理、化学、生物、政治、技术”五门学科中选择三门作为自己的选考科目,求小明选中“技术”的概率
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由=0可求解【详解】由题意,故选:D2、A【解析】将代数式与相乘,展开后利用基本不等式可求得的最小值,可得出关于实数的不等式,解之即可.【详解】因为正实数、满足,则,即,所以,,当且仅当时,即当时,等号成立,即的最小值为,因为不等式有解,则,即,即,解得或.故选:A.II卷3、B【解析】根据双曲线的几何性质和平行四边形的性质可知也在双曲线的渐近线上,且在第一象限,从而由可知轴,所以在直角三角形中,,由,可得的范围,进而转化为,的不等式,结合可得离心率的取值范围【详解】解:因为经过点且与轴垂直的直线与双曲线的一条渐近线相交于点,且在第三象限,四边形为平行四边形,所以由双曲线的对称性可知也在双曲线的渐近线上,且在第一象限,由轴,可知轴,所以,在直角三角形中,,因为,所以,,即,所以,即,即,故,所以.故选:B4、A【解析】由题意,从4个数中选出3个数出来全排列即可.【详解】由题意,从4个数中选出3个数出来全排列,共可写出个三位数.故选:A5、A【解析】先根据频率分布直方图确定成绩在内的频率,进而可求出结果.【详解】由题意可得:成绩在内的频率为,又本次赛车中,共名参赛选手,所以,这名选手中获奖的人数为.故选A【点睛】本题主要考查频率分布直方图,会根据频率分布直方图求频率即可,属于常考题型.6、B【解析】记另3名同学分别为a,b,c,应用列举法求古典概型的概率即可.【详解】记另3名同学分别为a,b,c,所以基本事件为,,(a,小王),(a,小张),,(b,小王),(b,小张),(c,小王),(c,小张),(小王,小张),共10种小王和小张都没有被挑出包括的基本事件为,,,共3种,综上,小王和小张都没有挑出的概率为故选:B.7、B【解析】根据向量加法和减法法则即可用、、表示出.【详解】故选:B.8、C【解析】根据折线图,求出甲乙中位数、平均数及方差、极差,即可判断各选项的正误.【详解】由题图,甲队数据从小到大排序为,乙队数据从小到大排序为,所以甲乙两队的平均数都为5,甲、乙进球中位数相同都为5,A、B错误;甲队方差为,乙队方差为,即,故乙队球员进球水平比甲队稳定,C正确.甲队极差为6,乙队极差为4,故甲队极差比乙队大,D错误.故选:C9、C【解析】由题意可知图中每90°的圆弧半径符合斐波那契数1,1,2,3,5,8,…,从而可求出下一段圆弧的半径为13,由于每一个圆弧为四分之一圆,从而可求出下一段圆弧所以圆的圆心,进而可得其方程【详解】解:由题意可知图中每90°的圆弧半径符合斐波那契数1,1,2,3,5,8,…,从而可求出下一段圆弧的半径为13,由题意可知下一段圆弧过点,因为每一段圆弧的圆心角都为90°,所以下一段圆弧所在圆的圆心与点的连线平行于轴,因为下一段圆弧半径为13,所以所求圆的圆心为,所以所求圆的方程为,故选:C10、C【解析】根据逆否命题的定义写出逆否命题即得【详解】解:以否定的结论作条件、否定的条件作结论得出的命题为原命题的逆否命题,即“若,则”的逆否命题是“若,则”故选:C11、D【解析】根据抛物线的定义得出当点P在抛物线的顶点时,|PF|取最小值.【详解】根据题意,设抛物线y=2x2上点P到准线的距离为d,则有|PF|=d,抛物线的方程为y=2x2,即x2=y,其准线方程为y=-,∴当点P在抛物线的顶点时,d有最小值,即|PF|min=.故选:D12、C【解析】利用点到直线距离公式求出圆心到直线的距离范围,从而求出的取值范围.【详解】圆心到直线的距离,当且仅当时等号成立,故只需即可.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、e=2.【解析】先求出直线的方程,利用原点到直线的距离为,,求出的值,进而根据求出离心率【详解】由l过两点(a,0),(0,b),得l的方程为bx+ay-ab=0.由原点到l的距离为c,得=c.将b=代入平方后整理,得162-16·+3=0.解关于的一元二次方程得=或.∵e=,∴e=或e=2.又0<a<b,故e===>.∴应舍去e=.故所求离心率e=2.【点睛】本题考查双曲线性质,考查求双曲线的离心率常用的方法即构造出关于的等式,属于中档题14、(1)证明见解析;(2)①;②.【解析】(1)由可证得结论成立;(2)①设点、,利用点差法可求得直线的斜率,利用点斜式可得出所求直线的方程;②将直线的方程与椭圆的方程联立,列出韦达定理,由可得出,利用平面向量数量积的坐标运算可得出关于的等式,可求出的值,即可得出椭圆的方程.【详解】(1),,因此,;(2)①由(1)知,椭圆的方程为,即,当在椭圆的内部时,,可得.设点、,则,所以,,由已知可得,两式作差得,所以,所以,直线方程为,即.所以,直线的方程为;②联立,消去可得.,由韦达定理可得,,又,而,,,解得合乎题意,故,因此,椭圆的方程为.15、【解析】将变形为,令,,分别研究其单调性及值域,使问题转化为即可.【详解】由题,,令,则,由,得,由,得,所以在递减,在递增,所以,令,则,由,得,由,得,所以在递增,在递减,所以,若存在实数使得成立,即存在实数使得成立,即存在实数使得恒成立所以,即,解得,所以取值范围为.故答案为:【点睛】关键点点睛:本题解题关键是将所求问题转为存在实数使得恒成立,结合的值域进一步转化为存在实数使得恒成立,再只需即可.16、或【解析】由题设知A在圆上,代入圆的方程求出参数a,结合切线的性质及点斜式求切线方程.【详解】因为过的圆的切线只有一条,则在圆上,所以,则,且切线斜率,即,所以切线方程或,整理得或.故答案为:或.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设圆心,由题意得,,结合两点间的距离公式求解的值,则圆心与半径可求,圆的方程可求;(2)若直线的斜率不存在,设直线的方程为,符合题意,若直线的斜率存在,设直线方程为,即,由圆心到直线的距离与半径关系求得,则直线方程可求【小问1详解】解:(1)设圆心,由题意得,,,解得.圆心坐标为,半径.则圆的方程为;【小问2详解】解:(2)直线的斜率存在时,设直线的方程为,即,,圆心到直线的距离,即,解得,得直线的方程为.18、(1)证明见解析(2)【解析】(1)由已知,以为坐标原点,建立空间直角坐标系,分别表示出B、D、E、F点的坐标,然后通过计算向量数量积来进行证明;(2)由第(1)建立的空间直角坐标系,分别表示出对应点的坐标,然后计算平面与平面的法向量,然后通过法向量去计算两平面所成的锐二面角即可.【小问1详解】如图,以为坐标原点,以,的方向分别为,轴的正方向建立如图所示的空间直角坐标系,由,,,分别为,,的中点,则,,证明:因为,,所以,所以【小问2详解】设平面的法向量为,因为,,所以,令,得设平面的法向量为,则令,得因为所以平面与平面所成锐二面角的余弦值为19、(1);(2).【解析】(1)根据两圆内切,以及圆过定点列式求轨迹方程;(2)利用重心坐标公式可知,,再设直线的方程为与椭圆方程联立,利用根与系数的关系求解直线方程.【详解】(1)由已知可得,两式相加可得则点的轨迹是以、为焦点,长轴长为的椭圆,则因此曲线的方程是(2)因为,则点是的重心,易得直线的斜率存在,设直线的方程为,联立消得:且①②由①②解得则直线的方程为即【点睛】本题考查直线与椭圆的问题关系,本题的关键是根据求得,.20、(1)(2)证明见解析【解析】(1)作出图象,易知|EB|+|EA|为定值,根据椭圆定义即可判断点E的轨迹,从而写出其轨迹方程;(2)设,当直线MN斜率存在时,设直线MN的方程为:,联立MN方程和E的轨迹方程得根与系数的关系,根据解出k与m的关系即可以判断MN过定点;最后再考虑MN斜率不存在时是否也过该定点即可.【小问1详解】由圆A:可得(,∴圆心A(-,0),圆的半径r=8,,,可得,,,由椭圆的定义可得:点E的轨迹是以A(,0)、B(,0)为焦点,2a=8的椭圆,即a=4,c=,∴=16-7=9,∴动点E的轨迹方程为;【小问2详解】由(1)知,P(0,3),设,当直线MN的斜率存在时,设直线MN的方程为:,由,可得,∴,,∵,∴,即,整理可得:,∴k=m+3或m=3,当m=3时,直线MN的方程为:,此时过点P(0,3)不符合题意,∴k=m+3,∴直线MN的方程为:此时直线MN过点(-1,-3),当直线MN的斜率不存在时,,,解得,此时直线MN的方程为:,过点(-1,-3),综上所述:直线MN过定点(-1,-3).21、(1)a=4,b=4(2)【解析】(1)由题意得到关于的方程组,求解方程组即可求出答案.(2)结合(1)中求得的函数解析式,求导得到的单调性,可得当x=-2时,函数f(x)取得极大值.【小问1详解】由已知得f(0)=4,f′
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信息技术课标的心得体会(8篇)
- 俄语专业生求职信
- 企业停电停水的应急预案范文(7篇)
- 中秋佳节致辞(8篇)
- 设计课件网站教学课件
- 谚语讲解课件教学课件
- 盲目从众课件教学课件
- 天桃实验学校八年级上学期语文1月月考试卷
- 环境应急预案的编写要点
- 自建房屋建筑施工合同(2篇)
- 能源行业转型产业报告:新能源功率预测市场分析与展望
- 2023年新全国《退役军人保障法》知识竞赛题库与答案解析
- 临床微生物学检验:实验七 肠道杆菌的检验(二)
- 立冬-PPT-二十四节气课件
- 河南省建设工程竣工验收报告(官方版)
- 2023版X99主板BIOS详细设置手册
- 信息安全技术服务施工日志
- 北师大版五年级数学上册《平移》评课稿
- 食用油品泄露处置方案
- 小学校本课程-海上飞行家教学设计学情分析教材分析课后反思
- GB/T 19973.1-2023医疗保健产品灭菌微生物学方法 第1部分:产品上微生物总数的确定
评论
0/150
提交评论