![辽宁省盘锦市2024届高二数学第一学期期末学业质量监测模拟试题含解析_第1页](http://file4.renrendoc.com/view/405195c1cd09c785ab18b2e808661698/405195c1cd09c785ab18b2e8086616981.gif)
![辽宁省盘锦市2024届高二数学第一学期期末学业质量监测模拟试题含解析_第2页](http://file4.renrendoc.com/view/405195c1cd09c785ab18b2e808661698/405195c1cd09c785ab18b2e8086616982.gif)
![辽宁省盘锦市2024届高二数学第一学期期末学业质量监测模拟试题含解析_第3页](http://file4.renrendoc.com/view/405195c1cd09c785ab18b2e808661698/405195c1cd09c785ab18b2e8086616983.gif)
![辽宁省盘锦市2024届高二数学第一学期期末学业质量监测模拟试题含解析_第4页](http://file4.renrendoc.com/view/405195c1cd09c785ab18b2e808661698/405195c1cd09c785ab18b2e8086616984.gif)
![辽宁省盘锦市2024届高二数学第一学期期末学业质量监测模拟试题含解析_第5页](http://file4.renrendoc.com/view/405195c1cd09c785ab18b2e808661698/405195c1cd09c785ab18b2e8086616985.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省盘锦市2024届高二数学第一学期期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设圆上的动点到直线的距离为,则的取值范围是()A. B.C. D.2.数列1,,,的一个通项公式可以是()A. B.C. D.3.设函数,当自变量t由2变到2.5时,函数的平均变化率是()A.5.25 B.10.5C.5.5 D.114.已知直线和互相垂直,则实数的值为()A. B.C.或 D.5.已知曲线C的方程为,则下列结论正确的是()A.当时,曲线C为圆B.“”是“曲线C为焦点在x轴上的双曲线”的充分而不必要条件C.“”是“曲线C为焦点在x轴上的椭圆”的必要而不充分条件D.存在实数k使得曲线C为双曲线,其离心率为6.圆:与圆:的位置关系是()A.内切 B.外切C.相交 D.相离7.已知直线与直线垂直,则()A. B.C. D.8.已知实数满足方程,则的最大值为()A.3 B.2C. D.9.在中,已知角A,B,C所对边为a,b,c,,,,则()A. B.C. D.110.已知数列满足:,数列的前n项和为,若恒成立,则的取值范围是()A. B.C. D.11.甲,乙、丙、丁、戊共5人随机地排成一行,则甲、乙相邻,丙、丁不相邻的概率为()A. B.C. D.12.设集合,集合,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.若点O和点F分别为椭圆+=1的中心和左焦点,点P为椭圆上的任意一点,则·的最大值为________.14.函数在处的切线与平行,则________.15.已知过椭圆上的动点作圆(为圆心):的两条切线,切点分别为,若的最小值为,则椭圆的离心率为______16.由曲线围成的图形的面积为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:,斜率为的直线l与椭圆C交于A、B两点且(1)求椭圆C的离心率;(2)求直线l方程18.(12分)在平面直角坐标系中,△的三个顶点分别是点.(1)求△的外接圆O的标准方程;(2)过点作直线平行于直线,判断直线与圆O的位置关系,并说明理由.19.(12分)如图1,在中,,,,分别是,边上的中点,将沿折起到的位置,使,如图2(1)求点到平面距离;(2)在线段上是否存在一点,使得平面与平面夹角的余弦值为.若存在,求出长;若不存在,请说明理由20.(12分)在①,②,③这三个条件中任选一个,补充在下面问题的题设条件中.问题:等差数列的公差为,满足,________?(1)求数列的通项公式;(2)求数列的前项和得到最小值时的值.21.(12分)在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点;(I)求异面直线A1B,AC1所成角的余弦值;(II)求直线AB1与平面C1AD所成角的正弦值22.(10分)已知各项均为正数的等差数列中,,且,,构成等比数列的前三项(1)求数列,的通项公式;(2)求数列的前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求出圆心到直线距离,再借助圆的性质求出d的最大值与最小值即可.【详解】圆的方程化为,圆心为,半径为1,则圆心到直线的距离,即直线和圆相离,因此,圆上的动点到直线的距离,有,,即,即的取值范围是:.故选:C2、A【解析】根据各项的分子和分母特征进行求解判断即可.【详解】因为,所以该数列的一个通项公式可以是;对于选项B:,所以本选项不符合要求;对于选项C:,所以本选项不符合要求;对于选项D:,所以本选项不符合要求,故选:A3、B【解析】利用平均变化率的公式即得.【详解】∵,∴.故选:B.4、B【解析】由两直线垂直可得出关于实数的等式,求解即可.【详解】由已知可得,解得.故选:B.5、C【解析】根据椭圆、双曲线的定义及简单几何性质计算可得;【详解】解:由题意,曲线C的方程为,对于A中,当时,曲线C的方程为,此时曲线C表示椭圆,所以A错误;对于B中,当曲线C的方程为表示焦点在x轴上的双曲线时,则满足,解得,所以“”是“曲线C为焦点在x轴上的双曲线”的必要不充分条件,所以B不正确;对于C中,当曲线C的方程为表示焦点在x轴上的椭圆时,则满足,解得,所以“”是“曲线C为焦点在x轴上的双曲线”的必要不充分条件,所以C正确;对于D中,当曲线C的方程为表示双曲线,且离心率为时,此时双曲线的实半轴长等于虚半轴长,此时,解得,此时方程表示圆,所以不正确.故选:C.6、A【解析】先计算两圆心之间的距离,判断距离和半径和、半径差之间的关系即可.【详解】圆圆心,半径,圆圆心,半径,两圆心之间的距离,故两圆内切.故选:A.7、C【解析】根据两直线垂直可直接构造方程求得结果.【详解】由两直线垂直得:,解得:.故选:C.8、D【解析】将方程化为,由圆的几何性质可得答案.【详解】将方程变形为,则圆心坐标为,半径,则圆上的点的横坐标的范围为:则x的最大值是故选:D.9、B【解析】利用正弦定理求解.【详解】在中,由正弦定理得,解得,故选:B.10、D【解析】由于,所以利用裂项相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【详解】,故,故恒成立等价于,即恒成立,化简得到,因为,当且仅当,即时取等号,所以故选:D11、A【解析】先求出所有的基本事件,再求出甲、乙相邻,丙、丁不相邻的基本事件,根据古典概型的概率公式求解即可【详解】甲,乙、丙、丁、戊共5人随机地排成一行有种方法,甲、乙相邻,丙、丁不相邻的排法为先将甲、乙捆绑在一起,再与戊进行排列,然后丙、丁从3个空中选2个空插入,则共有种方法,所以甲、乙相邻,丙、丁不相邻的概率为,故选:A12、A【解析】解不等式求集合,然后判断两个集合的关系【详解】,解得,故,可化为或,解得或,故,故“”是“”的充分不必要条件故选:A二、填空题:本题共4小题,每小题5分,共20分。13、6【解析】由椭圆方程得到F,O的坐标,设P(x,y)(-2≤x≤2),利用数量积的坐标运算将·转化为二次函数最值求解.【详解】由椭圆+=1,可得F(-1,0),点O(0,0),设P(x,y)(-2≤x≤2),则·=x2+x+y2=x2+x+3=x2+x+3=(x+2)2+2,-2≤x≤2,当x=2时,·取得最大值6.故答案为:6【点睛】本题主要考查平面向量的数量积及应用以及椭圆的几何性质和二次函数求最值,还考查了运算求解的能力,属于中档题.14、2【解析】由得出的值.【详解】因为函数在处的切线与平行所以,故故答案为:215、【解析】由椭圆方程和圆的方程可确定椭圆焦点、圆心和半径;当最小时,可知,此时;根据椭圆性质知,解方程可求得,进而得到离心率.【详解】由椭圆方程知其右焦点为;由圆的方程知:圆心为,半径为;当最小时,则最小,即,此时最小;此时,;为椭圆右顶点时,,解得:,椭圆的离心率.故答案为:.16、【解析】曲线围成的图形关于轴,轴对称,故只需要求出第一象限的面积即可.【详解】将或代入方程,方程不发生改变,故曲线关于关于轴,轴对称,因此只需求出第一象限的面积即可.当,时,曲线可化为:,在第一象限为弓形,其面积为,故.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)将椭圆化为标准方程,求得,进而求得离心率;(2)设直线,,,与椭圆联立,借助韦达定理及弦长公式求得,从而求得直线方程.【小问1详解】由题知,椭圆C:,则,离心率【小问2详解】设直线,,联立,化简得,则,解得,,由弦长公式知,,解得,故直线或18、(1);(2)直线与圆O相切,理由见解析.【解析】(1)法1:设外接圆为,由点在圆上,将其代入方程求参数,即可得圆的方程;法2:利用斜率的两点式易得,则是△外接圆的直径,进而求圆心坐标、半径,即可得圆的标准方程.(2)由题设有直线垂直于x轴,根据直线平行于直线及所过的点写出直线l的方程,求圆O的圆心与直线距离,并与半径比大小,即可确定它们的位置关系.【小问1详解】法1:设过三点的圆的方程为,则,解得,所求圆的方程为,即.法2:因,所以,则是△外接圆的直径,圆心,所以所求圆的方程为.【小问2详解】因为,则直线垂直于x轴,所以直线的方程为,由(1)知:圆心到直线的距离,所以直线与圆O相切.19、(1)(2)存在,【解析】(1)根据题意分别由已知条件计算出的面积和的面积,利用求解,(2)如图建立空间直角坐标系,设,然后求出平面与平面的法向量,利用向量平夹角公式列方程可求得结果【小问1详解】在中,,因为,分别是,边上的中点,所以∥,,所以,所以,因为,所以平面,所以平面,因为平面,所以,所以,因为平面,平面,所以平面平面,因为,所以,因为,所以是等边三角形,取的中点,连接,则,,因为平面平面,平面平面,平面,所以平面,在中,,所以边上的高为,所以,在梯形中,,设点到平面的距离为,因为,所以,所以,得,所以点到平面的距离为【小问2详解】由(1)可知平面,,所以以为原点,建立如图所示的空间直角坐标系,则,设,则,设平面的法向量为,则,令,则,设平面的法向量为,则,令,则,则平面与平面夹角的余弦值为,两边平方得,,解得或(舍去),所以,所以20、(1)选择条件见解析,(2)【解析】(1)设等差数列的公差为,由,得到,选①,联立求解;选②,联立求解;选③,联立求解;(2)由(1)知,令求解.【小问1详解】解:设等差数列的公差为,得,选①,得,故,∴.选②,得,得,故,∴.选③,,得,故,∴;【小问2详解】由(1)知,,,∴数列是递增等差数列.由,得,∴时,,时,,∴时,得到最小值.21、(I)(II)【解析】(I)以,,为x,y,z轴建立空间直角坐标系A﹣xyz,可得和的坐标,可得cos<,>,可得答案;(II)由(I)知,=(2,0,﹣4),=(1,1,0),设平面C1AD的法向量为=(x,y,z),由可得=(1,﹣1,),设直线AB1与平面C1AD所成的角为θ,则sinθ=|cos<,>|=,进而可得答案解:(I)以,,x,y,z轴建立空间直角坐标系A﹣xyz,则可得B(2,0,0),A1(0,0,4),C1(0,2,4),D(1,1,0),∴=(2,0,﹣4),=(0,2,4),∴cos<,>==∴异面直线A1B,AC1所成角的余弦值为:;(II)由(I)知,=(2,0,﹣4),=(1,1,0),设平面C1AD的法向量为=(x,y,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球及中国饲料中间体化学品行业头部企业市场占有率及排名调研报告
- 2025-2030全球高速标签打印机行业调研及趋势分析报告
- 2025年全球及中国汽车座椅加热通风线束行业头部企业市场占有率及排名调研报告
- 2025-2030全球条形码库存管理系统行业调研及趋势分析报告
- 2025-2030全球生物基电池行业调研及趋势分析报告
- 2025年全球及中国农场畜牧管理软件行业头部企业市场占有率及排名调研报告
- 2025-2030全球印刷级热敏纸行业调研及趋势分析报告
- 担保函保证合同
- 2025监控售后维修合同
- 房屋买卖合同范文
- 劳务经纪人培训
- 如何提高售后服务的快速响应能力
- 危化品运输安全紧急救援与处理
- Unit-3-Reading-and-thinking课文详解课件-高中英语人教版必修第二册
- 高数(大一上)期末试题及答案
- 北方春节的十大风俗
- 婚介公司红娘管理制度
- 煤矿电气试验规程
- JCT796-2013 回弹仪评定烧结普通砖强度等级的方法
- 物业客服培训课件PPT模板
- 火力发电厂节能管理制度实施细则
评论
0/150
提交评论