版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省莒县第二中学2024届高二数学第一学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.倾斜角为120°,在x轴上截距为-1的直线方程是()A.x-y+1=0 B.x-y-=0C.x+y-=0 D.x+y+=02.离心率为,长轴长为6的椭圆的标准方程是A. B.或C. D.或3.在区间内随机地取出两个数,则两数之和小于的概率是()A. B.C. D.4.某校开展研学活动时进行劳动技能比赛,通过初选,选出共6名同学进行决赛,决出第1名到第6名的名次(没有并列名次),和去询问成绩,回答者对说“很遗㙳,你和都末拿到冠军;对说“你当然不是最差的”.试从这个回答中分析这6人的名次排列顺序可能出现的结果有()A.720种 B.600种C.480种 D.384种5.抛物线上点的横坐标为4,则到抛物线焦点的距离等于()A.12 B.10C.8 D.66.在等比数列{}中,,,则=()A.9 B.12C.±9 D.±127.设双曲线与椭圆:有公共焦点,.若双曲线经过点,设为双曲线与椭圆的一个交点,则的余弦值为()A. B.C. D.8.已知曲线,则曲线W上的点到原点距离的最小值是()A. B.C. D.9.双曲线的焦点坐标是()A. B.C. D.10.已知a,b为正实数,且,则的最小值为()A.1 B.2C.4 D.611.已知,是双曲线C:(,)的两个焦点,过点与x轴垂直的直线与双曲线C交于A、B两点,若是等腰直角三角形,则双曲线C的离心率为()A. B.C. D.12.已知双曲线的离心率为2,则C的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,,将中的所有元素按从大到小的顺序排列构成一个数列,则数列的前n项和的最大值为___________.14.若两定点A,B的距离为3,动点M满足,则M点的轨迹围成区域的面积为_________15.如图,在四面体中,BA,BC,BD两两垂直,,,则二面角的大小为______16.已知平面和两条不同的直线,则下列判断中正确的序号是___________.①若,则;②若,则;③若,则;④若,则;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,已知椭圆的左、右焦点分别是,,离心率,请再从下面两个条件中选择一个作为已知条件,完成下面的问题:①椭圆C过点;②以点为圆心,3为半径的圆与以点为圆心,1为半径的圆相交,且交点在椭圆C上(只能从①②中选择一个作为已知)(1)求椭圆C的方程;(2)已知过点的直线l交椭圆C于M,N两点,点N关于x轴的对称点为,且,M,三点构成一个三角形,求证:直线过定点,并求面积的最大值.18.(12分)已知函数(1)讨论函数的单调性;(2)若,证明:19.(12分)已知在等差数列中,,(1)求数列的通项公式;(2)若的前n项和为,且,,求数列的前n项和20.(12分)如图,在长方体中,底面是边长为1的正方形,侧棱长为2,且动点P在线段AC上运动(1)若Q为的中点,求点Q到平面的距离;(2)设直线与平面所成角为,求的取值范围21.(12分)设p:关于x的不等式有解,q:.(1)若p为真命题,求实数m的取值范围;(2)若为假命题,为真命题,求实数m的取值范围.22.(10分)如图,在四棱锥中,,,,,为中点,且平面.(1)求点到平面的距离;(2)线段上是否存在一点,使平面?如果不存在,请说明理由;如果存在,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由倾斜角求出斜率,写出斜截式方程,再化为一般式【详解】由于倾斜角为120°,故斜率k=-.又直线过点(-1,0),所以方程为y=-(x+1),即x+y+=0.故选:D.【点睛】本题考查直线方程的斜截式,属于基础题2、B【解析】试题解析:当焦点在x轴上:当焦点在y轴上:考点:本题考查椭圆的标准方程点评:解决本题的关键是焦点位置不同方程不同3、C【解析】利用几何概型的面积型,确定两数之和小于的区域,进而根据面积比求概率.【详解】由题意知:若两个数分别为,则,如上图示,阴影部分即为,∴两数之和小于的概率.故选:C4、D【解析】不是第一名且不是最后一名,的限制最多,先排有4种情况,再排,也有4种情况,余下的问题是4个元素在4个位置全排列,根据分步计数原理求解即可【详解】由题意,不是第一名且不是最后一名,的限制最多,故先排,有4种情况,再排,也有4种情况,余下4人有种情况,利用分步相乘计数原理知有种情况故选:D.5、C【解析】根据焦半径公式即可求出【详解】因为,所以,所以故选:C6、D【解析】根据题意,设等比数列的公比为,由等比数列的性质求出,再求出【详解】根据题意,设等比数列的公比为,若,,则,变形可得,则,故选:7、A【解析】求出双曲线方程,根据椭圆和双曲线的第一定义求出的长度,从而根据余弦定理求出的余弦值【详解】由题得,双曲线中,所以,双曲线方程为:,假设在第一象限,根据椭圆和双曲线的定义可得:,解得:,,所以根据余弦定理,故选:A8、A【解析】化简方程,得到,求出的范围,作出曲线的图形,通过图象观察,即可得到原点距离的最小值详解】解:即为,两边平方,可得,即有,则作出曲线的图形,如下:则点与点或的距离最小,且为故选:A9、B【解析】根据双曲线的方程,求得,结合双曲线的几何性质,即可求解.【详解】由题意,双曲线,可得,所以,且双曲线的焦点再轴上,所以双曲线的焦点坐标为.故选:B.10、D【解析】利用基本不等式“1”的妙用求最值.【详解】因为a,b为正实数,且,所以.当且仅当,即时取等号.故选:D11、B【解析】根据等腰直角三角形的性质,结合双曲线的离心率公式进行求解即可.【详解】由题意不妨设,,当时,由,不妨设,因为是等腰直角三角形,所以有,或舍去,故选:B12、A【解析】根据离心率及a,b,c的关系,可求得,代入即可得答案.【详解】因为离心率,所以,所以,,则,所以C的渐近线方程为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意设,,根据可得,从而,即可得出答案.【详解】设,由,得,由,得中的元素满足,即,可得所以,由,所以所以,要使得数列的前n项和的最大值,即求出数列中所以满足的项的和即可.即,得,则所以数列的前n项和的最大值为故答案为:147214、【解析】建立如图直角坐标系,设点,根据题意和两点坐标求距离公式可得,结合圆的面积公式计算即可.【详解】以点A为坐标原点,射线AB为x轴的非负半轴建立直角坐标系,如图,设点,则,由,化简并整理得:,于是得点M轨迹是以点为圆心,2为半径的圆,其面积为,所以M点的轨迹围成区域的面积为.故答案为:15、【解析】取的中点为,连接,由面面角的定义得出二面角的平面角为,再结合等腰直角三角形的性质得出二面角的大小.【详解】取的中点为,连接,因为,所以二面角的平面角为,因为,,所以为等腰直角三角形,即二面角的大小为.故答案为:16、②④【解析】根据直线与直线,直线与平面的位置关系依次判断每个选项得到答案.详解】若,则或,异面,或,相交,①错误;若,则,②正确;若,则或或与相交,③错误;若,则,④正确;故答案为:②④.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析,【解析】(1)若选①,则由题意可得,解方程组求出,从而可求得椭圆方程,若选②,,再结合离心率和求出,从而可求得椭圆方程,(2)由题意设直线MN的方程为,设,,,将直线方程代入椭圆方程中,消去,再利用根与系数的关系,表示出直线的方程,令,求出,结合前面的式子化简可得线过的定点,表示出的面积,利用基本不等式可求得其最大值【小问1详解】若选①:由题意知,∴.所以椭圆C的方程为.若选②:设圆与圆相交于点Q.由题意知:.又因为点Q在椭圆上,所以,∴.又因为,∴,∴.所以椭圆C的方程为.【小问2详解】由题易知直线MN斜率存在且不为0,因为,故设直线MN方程为,设,,,∴,∴,,因为点N关于x轴对称点为,所以,所以直线方程为,令,∴.又,∴.所以直线过定点,∴.当且仅当,即时,取等号.所以面积的最大值为.18、(1)当时,在上单调递增;当时,在上单调递减,在上单调递增;(2)见详解【解析】(1)对函数进行求导,然后根据参数进行分类讨论;(2)构造函数,求函数的最小值即可证出.【详解】(1)的定义域为,.当时,在上恒成立,所以在上单调递增;当时,时,;时,,所以在上单调递减,在上单调递增.综上所述,当时,在上单调递增;当时,在上单调递减,在上单调递增.(2)当时,.令,,则.,令,.恒成立,所以在上单调递增.因为,,所以存在唯一的,使得,即.①当时,,即,所以在上单调递减;当时,,即,所以在上单调递增.所以,,②方法一:把①代入②得,.设,.则恒成立,所以在上单调递减,所以.因为,所以,即,所以,所以时,.方法二:设,.则,所以在上单调递增,所以,所以.因为,所以,所以,所以时,.【点睛】不等式证明问题是近年高考命题的热点,利用导数证明不等式的方法主要有两个:(1)不等式两边作差构造函数,利用导数研究函数的单调性,求出函数最值即可;(2)观察不等式的特点,结合已解答问题把要证的不等式变形,并运用已证结论先行放缩,再化简或者进一步利用导数证明.19、(1);(2).【解析】(1)根据给定条件求出数列的公差即可求解作答.(2)由已知条件求出数列的通项,再利用错位相减法计算作答.【小问1详解】等差数列中,,解得,则公差,所以数列的通项公式为:.【小问2详解】的前n项和为,,,则当时,,于是得,即,而,即,,因此,数列是首项为2,公比为2的等比数列,,由(1)知,,则,因此,,,所以数列的前n项和.20、(1)1(2)【解析】(1)以AB,AD,为x,y,z轴正向建立直角坐标系,利用空间向量法求出平面的法向量,结合点到平面的距离的向量求法计算即可;(2)设点,,进而得出的坐标,利用向量的数量积即可列出线面角正弦值的表达式,结合二次函数的性质即可得出结果.【小问1详解】由题意,分别以AB,AD,为x,y,z轴正向建立直角坐标系,于是,,,,,设平面法向量所以,解得,,令得,,设点Q到平面的距离为d,【小问2详解】由(1)可知,平面的法向量,由P点在线段AC上运动可设点,于是,,所以,的取值范围是21、(1)(2)【解析】根据题意,解出p和q里面m的范围即可求解﹒其中有解,则≥0﹒【小问1详解】p为真命题时,,解得,所以m的取值范围是;【小问2详解】q为真命题时,即,解得,所以q为假命题时,或,由(1)知,p为假时,因为为假命题,为真命题,所以p,q为一真一假,当p真q假时,且“或”,解得;当p假q真时,,解得;综上:m的取值范围是22、(1)(2)线段上存在一点,当时,平面.【解析】(1)设点到平面的距离为,则由,由体积法可得答案.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度旅游区旅游导游服务承包合同4篇
- 二零二五年度陈纨与钱明的离婚赡养费支付合同3篇
- 二零二五年度城市绿地养护服务合同范本4篇
- 2025年物业社区停车管理服务合同3篇
- 2025年度教育机构校园场地无偿借用合同4篇
- 二零二五浙江购房贷款利率调整7月1日生效合同3篇
- 二零二五年度钢结构工程绿色施工技术与环保达标合同2篇
- 2025年度码头装卸货物保险理赔服务合同
- 2025年度环境保护设施建设与运营管理合同4篇
- 2025年度地质工程测绘与土地整治合同4篇
- 以发展为导向共创教育新篇章-2024年期末校长总结讲话稿
- 2025年焊工安全生产操作规程(2篇)
- 广东省广州越秀区2023-2024学年八年级上学期期末数学试卷(含答案)
- 临床经鼻高流量湿化氧疗患者护理查房
- 2024年贵州省中考数学真题含解析
- 参考新医大-中央财政支持地方高校发展专项资金建设规
- 《中医内科学关格》课件
- 2024年中国PCB板清洗剂市场调查研究报告
- 《纸管》规范要求
- 【数学】2021-2024年新高考数学真题考点分布汇
- 2024年育婴师合同协议书
评论
0/150
提交评论