




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
有等腰三角形时常用的辅助线⑴作顶角的平分线,底边中线,底边高线例:已知,如图,AB=AC,BD⊥AC于D,求证:∠BAC=2∠DBC证明:(方法一)作∠BAC的平分线AE,交BC于E,则∠1=∠2=∠BAC又∵AB=AC∴AE⊥BC∴∠2+∠ACB=90o∵BD⊥AC∴∠DBC+∠ACB=90o∴∠2=∠DBC∴∠BAC=2∠DBC(方法二)过A作AE⊥BC于E(过程略)(方法三)取BC中点E,连结AE(过程略)⑵有底边中点时,常作底边中线例:已知,如图,△ABC中,AB=AC,D为BC中点,DE⊥AB于E,DF⊥AC于F,求证:DE=DF证明:连结AD.∵D为BC中点,∴BD=CD又∵AB=AC∴AD平分∠BAC∵DE⊥AB,DF⊥AC∴DE=DF⑶将腰延长一倍,构造直角三角形解题例:已知,如图,△ABC中,AB=AC,在BA延长线和AC上各取一点E、F,使AE=AF,求证:EF⊥BC证明:延长BE到N,使AN=AB,连结CN,则AB=AN=AC∴∠B=∠ACB,∠ACN=∠ANC∵∠B+∠ACB+∠ACN+∠ANC=180o∴2∠BCA+2∠ACN=180o∴∠BCA+∠ACN=90o即∠BCN=90o∴NC⊥BC∵AE=AF∴∠AEF=∠AFE又∵∠BAC=∠AEF+∠AFE∠BAC=∠ACN+∠ANC∴∠BAC=2∠AEF=2∠ANC∴∠AEF=∠ANC∴EF∥NC∴EF⊥BC⑷常过一腰上的某一已知点做另一腰的平行线例:已知,如图,在△ABC中,AB=AC,D在AB上,E在AC延长线上,且BD=CE,连结DE交BC于F求证:DF=EF证明:(证法一)过D作DN∥AE,交BC于N,则∠DNB=∠ACB,∠NDE=∠E,∵AB=AC,∴∠B=∠ACB∴∠B=∠DNB∴BD=DN又∵BD=CE∴DN=EC在△DNF和△ECF中∠1=∠2∠NDF=∠EDN=EC∴△DNF≌△ECF∴DF=EF(证法二)过E作EM∥AB交BC延长线于M,则∠EMB=∠B(过程略)⑸常过一腰上的某一已知点做底的平行线例:已知,如图,△ABC中,AB=AC,E在AC上,D在BA延长线上,且AD=AE,连结DE求证:DE⊥BC证明:(证法一)过点E作EF∥BC交AB于F,则∠AFE=∠B∠AEF=∠C∵AB=AC∴∠B=∠C∴∠AFE=∠AEF∵AD=AE∴∠AED=∠ADE又∵∠AFE+∠AEF+∠AED+∠ADE=180o∴2∠AEF+2∠AED=90o即∠FED=90o∴DE⊥FE又∵EF∥BC∴DE⊥BC(证法二)过点D作DN∥BC交CA的延长线于N,(过程略)(证法三)过点A作AM∥BC交DE于M,(过程略)⑹常将等腰三角形转化成特殊的等腰三角形等边三角形⑸常过一腰上的某一已知点做底的平行线例:已知,如图,△ABC中,AB=AC,F在AC上,E在BA延长线上,且AE=AF,连结DE求证:EF⊥BC⑹常将等腰三角形转化成特殊的等腰三角形等边三角形例:已知,如图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 代理变更公司合同范本
- 上海品质营销咨询合同范本
- 公司租农田合同范本
- 养兔场建设合同范本
- 第四章 光现象第4节 光的折射(教学设计)-2024-2025学年人教版八年级物理上册
- 2024年中牧实业股份有限公司招聘笔试真题
- 业绩奖励合同范本
- 分期按揭合同范本
- 北京房屋租赁合同合同范本
- 2024年河南驻马店幼儿师范高等专科学校教师招聘考试真题
- 医院合法性审查制度
- 现场签证流程图
- (新插图)人教版四年级下册数学 第2招 巧算24点 期末复习课件
- 驾驶员违规违章安全教育谈话记录表
- 2023年10月山东青岛开放大学招考聘用工作人员(第二批)笔试历年高频考点试题含答案带详解
- 一级建造师《港口与航道工程管理与实务》
- 四年级下册劳动《做水果拼盘》
- 工厂车间划线标准与标识管理(共37张PPT)
- 幼儿园课件PPT《如何有效的与家长沟通》
- 一年级下册《综合实践活动》全册教案【完整版】
- 人教版小学一年级英语课本上册课件
评论
0/150
提交评论