南昌县莲塘第一中学2023年高二数学第一学期期末预测试题含解析_第1页
南昌县莲塘第一中学2023年高二数学第一学期期末预测试题含解析_第2页
南昌县莲塘第一中学2023年高二数学第一学期期末预测试题含解析_第3页
南昌县莲塘第一中学2023年高二数学第一学期期末预测试题含解析_第4页
南昌县莲塘第一中学2023年高二数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

南昌县莲塘第一中学2023年高二数学第一学期期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.总体有编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取3个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08 B.02C.63 D.142.若函数在区间上单调递增,则实数的取值范围是A. B.C. D.3.已知,则点关于平面的对称点的坐标是()A. B.C. D.4.饕餮(tāotiè)纹,青铜器上常见的花纹之一,盛行于商代至西周早期,最早出现在距今五千年前长江下游地区的良渚文化玉器上.有人将饕餮纹的一部分画到了方格纸上,如图所示,每个小方格的边长为,有一点从点出发每次向右或向下跳一个单位长度,且向右或向下跳是等可能性的,那么它经过次跳动后恰好是沿着饕餮纹的路线到达点的概率为()A. B.C. D.5.抛掷两枚硬币,若记出现“两个正面”“两个反面”“一正一反”的概率分别为,,,则下列判断中错误的是().A. B.C. D.6.已知,为双曲线的左,右顶点,点P在双曲线C上,为等腰三角形,且顶角为,则双曲线C的离心率为()A. B.C.2 D.7.已知数列满足,在任意相邻两项与(k=1,2,…)之间插入个2,使它们和原数列的项构成一个新的数列.记为数列的前n项和,则的值为()A.162 B.163C.164 D.1658.设等比数列的前项和为,若,,则()A.66 B.65C.64 D.639.若在直线上,则直线的一个方向向量为()A. B.C. D.10.已知圆与抛物线的准线相切,则实数p的值为()A.2 B.6C.3或8 D.2或611.已知不等式的解集为,关于x的不等式的解集为B,且,则实数a的取值范围为()A. B.C. D.12.命题,,则是()A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆与坐标轴依次交于A,B,C,D四点,则四边形ABCD面积为_____.14.已知函数定义域为,值域为,则______15.由曲线围成的图形的面积为_______________16.圆锥的母线长为2,母线所在直线与圆锥的轴所成角为,则该圆锥的侧面积大小为____________.(结果保留)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,PA=2AD=4,且PC=.点E在PC上.(1)求证:平面BDE⊥平面PAC;(2)若E为PC的中点,求直线PC与平面AED所成的角的正弦值.18.(12分)某地区2021年清明节前后3天每天下雨的概率为50%,通过模拟实验的方法来计算该地区这3天中恰好有2天下雨的概率.用随机数x(,且)表示是否下雨:当时表示该地区下雨,当时,表示该地区不下雨,从随机数表中随机取得20组数如下:332714740945593468491272073445992772951431169332435027898719(1)求出m的值,并根据上述数表求出该地区清明节前后3天中恰好有2天下雨的概率;(2)从2012年到2020年该地区清明节当天降雨量(单位:)如表:(其中降雨量为0表示没有下雨).时间2012年2013年2014年2015年2016年2017年2018年2019年2020年年份t123456789降雨量y292826272523242221经研究表明:从2012年至2021年,该地区清明节有降雨的年份的降雨量y与年份t成线性回归,求回归直线方程,并计算如果该地区2021年()清明节有降雨的话,降雨量为多少?(精确到0.01)参考公式:,参考数据:,,,19.(12分)已知圆,是圆上一点,过A作直线l交圆C于另一点B,交x轴正半轴于点D,且A为的中点.(1)求圆C在点A处的切线方程;(2)求直线l的方程.20.(12分)已知椭圆.离心率为,点与椭圆的左、右顶点可以构成等腰直角三角形(1)求椭圆的方程;(2)若直线与椭圆交于两点,为坐标原点直线的斜率之积等于,试探求的面积是否为定值,并说明理由21.(12分)记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.22.(10分)已知圆的圆心在第一象限内,圆关于直线对称,与轴相切,被直线截得的弦长为.(1)求圆的方程;(2)若点,求过点的圆的切线方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由随机数表法抽样原理即可求出答案.【详解】根据题意,依次读出的数据为65(舍去),72(舍去),08,02,63(舍去),14,即第三个个体编号为14.故选:D.2、D【解析】,∵函数在区间单调递增,∴在区间上恒成立.∴,而在区间上单调递减,∴.∴取值范围是.故选D考点:利用导数研究函数的单调性.3、C【解析】根据对称性求得坐标即可.【详解】点关于平面的对称点的坐标是,故选:C4、B【解析】本题首先可根据题意列出次跳动的所有基本事件,然后找出沿着饕餮纹的路线到达点的事件,最后根据古典概型的概率计算公式即可得出结果.【详解】点从点出发,每次向右或向下跳一个单位长度,次跳动的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),沿着饕餮纹的路线到达点的事件有:(下,下,右),故到达点的概率,故选:B.5、A【解析】把抛掷两枚硬币的情况均列举出来,利用古典概型的计算公式,把,,算出来,判断四个选项的正误.【详解】两枚硬币,记为与,则抛掷两枚硬币,一共会出现的情况有四种,A正B正,A正B反,A反B正,A反B反,则,,,所以A错误,BCD正确故选:A6、A【解析】根据给定条件求出点P的坐标,再代入双曲线方程计算作答.【详解】由双曲线对称性不妨令点P在第一象限,过P作轴于B,如图,因为等腰三角形,且顶角为,则有,,有,于是得,即点,因此,,解得,所以双曲线C的离心率为.故选:A7、C【解析】确定数列的前70项含有的前6项和64个2,从而求出前70项和.【详解】,其中之间插入2个2,之间插入4个2,之间插入8个2,之间插入16个2,之间插入32个2,之间插入64个2,由于,,故数列的前70项含有的前6项和64个2,故故选:C8、B【解析】根据等比数列前项和的片段和性质求解即可.【详解】解:由题知:,,,所以,,成等比数列,即5,15,成等比数列,所以,解得.故选:B.9、D【解析】由题意可得首先求出直线上的一个向量,即可得到它的一个方向向量,再利用平面向量共线(平行)的坐标表示即可得出答案【详解】∵在直线上,∴直线的一个方向向量,又∵,∴是直线的一个方向向量故选:D10、D【解析】由抛物线准线与圆相切,结合抛物线方程,令求切线方程且抛物线准线方程为,即可求参数p.【详解】圆的标准方程为:,故当时,有或,所以或,得或6故选:D11、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分离参数求解即可.【详解】由得,,解得,因为,所以所以可得在上恒成立,即在上恒成立,故只需,,当时,,故故选:B12、D【解析】根据特称命题的否定为全称命题,即可得到答案.【详解】因为命题,,所以,.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据椭圆的方程,求得顶点的坐标,结合菱形的面积公式,即可求解.【详解】由题意,椭圆,可得,可得,所以椭圆与坐标轴的交点分别为,此时构成的四边形为菱形,则面积为.故答案为:.14、3【解析】根据定义域和值域,结合余弦函数的图像与性质即可求得的值,进而得解.【详解】因为,由余弦函数的图像与性质可得,则,由值域为可得,所以,故答案为:3.【点睛】本题考查了余弦函数图像与性质的简单应用,属于基础题.15、【解析】当时,曲线表示的图形为以为圆心,以为半径的圆在第一象限的部分,所以面积为,根据对称性,可知由曲线围成的图形的面积为考点:本小题主要考查曲线表示的平面图形的面积的求法,考查学生分类讨论思想的运用和运算求解能力.点评:解决此题的关键是看出所求图形在四个象限内是相同的,然后求出在一个象限内的图形的面积即可解决问题.16、【解析】由题设知:圆锥的轴截面为等边三角形,进而求圆锥的底面周长,由扇形面积公式求圆锥的侧面积大小.【详解】由题设,圆锥的轴截面为等边三角形,又圆锥的母线长为2,∴底面半径为1,则底面周长为,∴圆锥的侧面积大小为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】(1)根据题意可判断出ABCD是正方形,从而可得,再根据,由线面垂直的判定定理可得平面PAC,然后由面面垂直的判定定理即可证出;(2)由、、两两垂直可建立空间直角坐标系,利用向量法即可求出直线PC与平面AED所成的角的正弦值.【小问1详解】因为PA⊥底面ABCD,PA=2AD=4,PC=,所以,,即ABCD是正方形,所以,而PA⊥底面ABCD,所以,又,所以平面PAC,而平面BDE,所以平面BDE⊥平面PAC【小问2详解】由题可知、、两两垂直,建系如图,,0,,,2,,,0,,,2,,,1,,,,,,1,,,2,,设平面的一个法向量为,则,,即,取,0,,所以直线与平面所成的角的正弦值为18、(1),;(2);该地区2020年清明节有降雨的话,降雨量为20.2mm【解析】(1)利用概率模拟求概率;(2)套用公式求回归直线方程即可.【详解】解:(1)由题意可知,,解得,即表示下雨,表示不下雨,所给的20组数据中714,740,491,272,073,445,435,027,共8组表示3天中恰有两天下雨,故所求的概率为;(2)由题中所给的数据可得,,所以,,所以回归方程为,当时,,所以该地区2020年清明节有降雨的话,降雨量为20.2mm【点睛】求线性回归方程的步骤:①求出;②套公式求出;③写出回归方程;④利用回归方程进行预报;19、(1)(2)或【解析】(1)以直线方程的点斜式去求圆C在点A处的切线方程;(2)以A为的中点为突破口,设点法去求直线l的方程简单快捷.【小问1详解】圆可化为,圆心因为直线的斜率为,所以圆C在A点处切线斜率为2,所以切线方程为即.【小问2详解】由题意设因为是中点,所以将B代入圆C方程得解得或当时,,此时l方程为当时,,此时l方程为所以l方程为或20、(1);(2)是定值,理由见解析.【解析】(1)由题意有,点与椭圆的左、右顶点可以构成等腰直角三角形有,即可写出椭圆方程;(2)直线与椭圆交于两点,联立方程结合韦达定理即有,已知应用点线距离公式、三角形面积公式即可说明的面积是否为定值;【详解】(1)椭圆离心率为,即,∵点与椭圆的左、右顶点可以构成等腰直角三角形,∴,综上有:,,故椭圆方程为,(2)由直线与椭圆交于两点,联立方程:,整理得,设,则,,,,原点到的距离,为定值;【点睛】本题考查了由离心率求椭圆方程,根据直线与椭圆的相交关系证明交点与原点构成的三角形面积是否为定值的问题.21、(1)(2),【解析】(1)由,计算出公差,再写出通项公式即可.(2)直接用公式写出,配方后求出最小值.【小问1详解】设公差为,由得,从而,即又,【小问2详解】由(1)的结论,,,当时,取得最小值.22

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论