




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南通市启东市启东中学2023-2024学年数学高二上期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则与的大小关系是()A. B.C. D.不能确定2.已知是等比数列,则()A.数列是等差数列 B.数列是等比数列C.数列是等差数列 D.数列是等比数列3.直线的倾斜角是()A. B.C. D.4.变量,之间的一组相关数据如表所示:若,之间的线性回归方程为,则的值为()45678.27.86.65.4A. B.C. D.5.下列直线中,倾斜角最大的为()A. B.C. D.6.在数列中抽取部分项(按原来的顺序)构成一个新数列,记为,再在数列插入适当的项,使它们一起能构成一个首项为1,公比为3的等比数列.若,则数列中第项前(不含)插入的项的和最小为()A.30 B.91C.273 D.8207.如图,在正方体中,异面直线与所成的角为()A. B.C. D.8.已知椭圆上一点到左焦点的距离为,是的中点,则()A.1 B.2C.3 D.49.已知点分别是椭圆的左、右焦点,点P在此椭圆上,,则的面积等于A. B.C. D.10.已知数列的通项公式为,按项的变化趋势,该数列是()A.递增数列 B.递减数列C.摆动数列 D.常数列11.已知函数的导数为,则等于()A.0 B.1C.2 D.412.直线的斜率是方程的两根,则与的位置关系是()A.平行 B.重合C.相交但不垂直 D.垂直二、填空题:本题共4小题,每小题5分,共20分。13.已知球的表面积是,则该球的体积为________.14.以下四个关于圆锥曲线的命题中:①设A、B为两个定点,k为非零常数,若,则动点P的轨迹为双曲线;②抛物线焦点坐标是;③过定圆C上一定点A作圆的动弦AB,O为坐标原点,若,则动点P的轨迹为椭圆;④曲线与曲线(且)有相同的焦点其中真命题的序号为______(写出所有真命题的序号.)15.瑞士数学家欧拉(Euler)1765年在所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,,则欧拉线的方程为______16.已知抛物线:,斜率为且过点的直线与交于,两点,且,其中为坐标原点(1)求抛物线的方程;(2)设点,记直线,的斜率分别为,,证明:为定值三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数(1)求函数的单调区间;(2)若有两个零点,,求的取值范围,并证明:18.(12分)如图1,在中,,,,分别是,边上的中点,将沿折起到的位置,使,如图2(1)求点到平面的距离;(2)在线段上是否存在一点,使得平面与平面夹角的余弦值为.若存在,求出长;若不存在,请说明理由19.(12分)已知,:,:.(1)若,为真命题,为假命题,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围20.(12分)在锐角中,角的对边分别为,满足.(1)求;(2)若的面积为,求的值.21.(12分)已知曲线C的方程为(1)判断曲线C是什么曲线,并求其标准方程;(2)过点的直线l交曲线C于M,N两点,若点P为线段MN的中点,求直线l的方程22.(10分)某城市100户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图(1)求直方图中的值;(2)求月平均用电量的众数和中位数
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题知,进而研究的符号即可得答案.详解】解:,所以,即.故选:B2、B【解析】取,可判断AC选项;利用等比数列的定义可判断B选项;取可判断D选项.【详解】若,则、无意义,A错C错;设等比数列的公比为,则,(常数),故数列是等比数列,B对;取,则,数列为等比数列,因为,,,且,所以,数列不是等比数列,D错.故选:B.3、A【解析】将直线方程化为斜截式,由此确定斜率;根据斜率和倾斜角关系可得结果.【详解】设直线的倾斜角为,则,由得:,则斜率,.故选:A.4、C【解析】本题先求样本点中心,再利用线性回归方程过样本点中心直接求解即可.【详解】解:,,所以样本点中心:,线性回归方程过样本点中心,则解得:,故选:C【点睛】本题考查线性回归方程过样本点中心,是简单题.5、D【解析】首先分别求直线的斜率,再结合直线倾斜角与斜率的关系,即可判断选项.【详解】A.直线的斜率;B.直线的斜率;C.直线的斜率;D.直线的斜率,因为,结合直线的斜率与倾斜角的关系,可知直线的倾斜角最大.故选:D6、C【解析】先根据等比数列的通项公式得到,列出数列的前6项,将其中是数列的项的所有数去掉即可求解.【详解】因为是以1为首项、3为公比的等比数列,所以,则由,得,即数列中前6项分别为:1、3、9、27、81、243,其中1、9、81是数列的项,3、27、243不是数列的项,且,所以数列中第7项前(不含)插入的项的和最小为.故选:C.7、C【解析】作出辅助线,找到异面直线所成的角,利用几何性质进行求解.【详解】连接与,因为,则为所求,又是正三角形,.故选:C.8、A【解析】由椭圆的定义得,进而根据中位线定理得.【详解】解:由椭圆方程得,即,因为由椭圆的定义得,,所以,因为是的中点,是的中点,所以.故选:A9、B【解析】根据椭圆标准方程,可得,结合定义及余弦定理可求得值,由及三角形面积公式即可求解.【详解】椭圆则,所以,则由余弦定理可知代入化简可得,则,故选:B.【点睛】本题考查了椭圆的标准方程及几何性质的简单应用,正弦定理与余弦定理的简单应用,三角形面积公式的用法,属于基础题.10、B【解析】分析的单调性,即可判断和选择.【详解】因为,显然随着的增大,是递增的,故是递减的,则数列是递减数列.故选:B.11、A【解析】先对函数求导,然后代值计算即可【详解】因为,所以.故选:A12、C【解析】由韦达定理可得方程的两根之积为,从而可知直线、的斜率之积为,进而可判断两直线的位置关系【详解】设方程的两根为、,则直线、的斜率,故与相交但不垂直故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设球的半径为r,代入表面积公式,可解得,代入体积公式,即可得答案.【详解】设球的半径为r,则表面积,解得,所以体积,故答案为:【点睛】本题考查已知球的表面积求体积,关键是求出半径,再进行求解,考查基础知识掌握程度,属基础题.14、②④##④②【解析】利用双曲线定义判断命题①;写出抛物线焦点判断命题②;分析点P满足的关系判断命题③;按取值讨论计算半焦距判断命题④作答.【详解】对于①,因双曲线定义中要求,则命题①不正确;对于②,抛物线化为:,其焦点坐标是,命题②正确;对于③,令定圆C的圆心为C,因,则点P是弦AB的中点,当P与C不重合时,有,点P在以线段AC为直径的圆上,当P与C重合时,点P也在以线段AC为直径的圆上,因此,动点P的轨迹是以线段AC为直径的圆(除A点外),则命题③不正确;对于④,曲线的焦点为,当时,椭圆中半焦距c满足:,其焦点为,当时,双曲线中半焦距满足:,其焦点为,因此曲线与曲线(且)有相同的焦点,命题④正确,所以真命题的序号为②④.故答案为:②④【点睛】易错点睛:椭圆长短半轴长分别为a,b,半焦距为c满足关系式:;双曲线的实半轴长、虚半轴长、半焦距分别为、、满足关系式:,在同一问题中出现认真区分,不要混淆.15、【解析】根据给定信息,利用三角形重心坐标公式求出的重心,再结合对称性求出的外心,然后求出欧拉线的方程作答.【详解】因的顶点,,,则的重心,显然的外心在线段AC中垂线上,设,由得:,解得:,即点,直线,化简整理得:,所以欧拉线的方程为.故答案:16、(1)(2)为定值6【解析】(1)由题意可知:将直线方程代入抛物线方程,由韦达定理可知:,,,,求得p的值,即可求得抛物线E的方程;(2)由直线的斜率公式可知:,,,代入,,即可得到:.试题解析:(1)直线的方程为,联立方程组得,设,,所以,,又,所以,从而抛物线的方程为(2)因为,,所以,,因此,又,,所以,即为定值点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见详解(2),证明见解析【解析】(1)求导得,,分类讨论参数a的范围即可判断单调区间;(2)设,,联立整理得,构造得,构造函数,结合导数判断单调性,进而得证.小问1详解】由,,可得,当时,,所以在上单调递增;当时,令,得,令,得所以在单调递减,在单调递增;【小问2详解】证明:因为函数有两个零点,由(1)得,此时的递增区间为,递减区间为,有极小值.所以,可得,所以.由(1)可得的极小值点为,则不妨设.设,,则则,即,整理得,所以,设,则,所以在上单调递减,所以,所以,即.18、(1)(2)存在,【解析】(1)根据题意分别由已知条件计算出的面积和的面积,利用求解,(2)如图建立空间直角坐标系,设,然后求出平面与平面的法向量,利用向量平夹角公式列方程可求得结果小问1详解】在中,,因为,分别是,边上的中点,所以∥,,所以,所以,因为,所以平面,所以平面,因为平面,所以,所以,因为平面,平面,所以平面平面,因为,所以,因为,所以是等边三角形,取的中点,连接,则,,因为平面平面,平面平面,平面,所以平面,中,,所以边上的高为,所以,在梯形中,,设点到平面的距离为,因,所以,所以,得,所以点到平面的距离为【小问2详解】由(1)可知平面,,所以以为原点,建立如图所示的空间直角坐标系,则,设,则,设平面的法向量为,则,令,则,设平面的法向量为,则,令,则,则平面与平面夹角的余弦值为,两边平方得,,解得或(舍去),所以,所以19、(1)(2)【解析】(1)化简命题p,将m=3代入求出命题q,再根据或、且连接的命题真假确定p,q真假即可得解;(2)由给定条件可得p是q的必要不充分条件,再列式计算作答.【小问1详解】依题意,:,:,得:.当时,:,因为真命题,为假命题,则与一真一假,当真假时,即或,无解,当假真时,即或,解得或,综上得:或,所以实数x的取值范围是;【小问2详解】因是的充分不必要条件,则p是q的必要不充分条件,于是得,解得,所以实数m的取值范围是20、(1);(2).【解析】(1)由条件可得,即,从而可得答案.(2)由条件结合三角形的面积公式可得,再由余弦定理得,配方可得答案.【详解】(1)因为,所以,所以所以,因为所以,因为,所以(2)由面积公式得,于是,由余弦定理得,即,整理得,故.21、(1);(2).【解析】(1)根据椭圆的定义即可判断并求解;(2)根据点差法即可求解中点弦斜率和中点弦方程.【小问1详解】设,,E(x,y),∵,,且,点的轨迹是以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国金属旋开盖行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030年中国造口护理配件行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030年中国运动文胸行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030年中国软行李袋行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030年中国花生油行业市场深度调研及投资前与投资策略景研究报告
- 2024年三亚市公务员考试行测试卷历年真题及完整答案详解
- 2024年河源市公务员考试行测试卷历年真题完整答案详解
- 2024年钦州市公务员考试行测试卷历年真题及答案详解(必刷)
- 2025年农业灌溉用水高效利用关键技术研究报告
- 绝缘子老化机理研究热点基础知识点归纳
- 2025年高考英语全国二卷试题含答案
- 2025江苏扬州宝应县“乡村振兴青年人才”招聘67人笔试备考题库及完整答案详解一套
- 抚州市乐安县招聘城市社区工作者笔试真题2024
- 仪器仪表制造职业技能竞赛理论题库
- 网络服务器配置与管理(微课版) 教案 项目02 虚拟化技术和VMware-2
- 税收分析试题及答案
- 2025年西式面点师(中级)面包烘焙实操考试试卷
- 回迁楼房买卖合同协议书
- 国家开放大学2025年《创业基础》形考任务3答案
- SL631水利水电工程单元工程施工质量验收标准第1部分:土石方工程
- 江岸区2023-2024学年下学期期末七年级数学试卷(含答案)
评论
0/150
提交评论