版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省抚州市临川第一中学2023-2024学年数学高二上期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过抛物线的焦点F的直线l与抛物线交于PQ两点,若以线段PQ为直径的圆与直线相切,则()A.8 B.7C.6 D.52.已知向量是两两垂直的单位向量,且,则()A.5 B.1C.-1 D.73.已知空间向量,,且与互相垂直,则k的值是()A.1 B.C. D.4.若“”是“”的充分不必要条件,则实数a的取值范围为A. B.或C. D.5.过点且垂直于直线的直线方程是()A. B.C. D.6.在空间直角坐标系中,点关于平面的对称点为,则()A.-4 B.-10C.4 D.107.若函数恰好有个不同的零点,则的取值范围是()A. B.C. D.8.在空间直角坐标系中,点关于轴对称的点的坐标为()A. B.C. D.9.已知函数对于任意的满足,其中是函数的导函数,则下列各式正确的是()A. B.C. D.10.已知抛物线的焦点为F,直线l经过点F交抛物线C于A,B两点,交抛物浅C的准线于点P,若,则为()A.2 B.3C.4 D.611.已知三角形三个顶点为、、,则边上的高所在直线的方程为()A. B.C. D.12.函数的导函数为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某教师组织本班学生开展课外实地测量活动,如图是要测山高.现选择点A和另一座山顶点C作为测量观测点,从A测得点M的仰角,点C的仰角,测得,,已知另一座山高米,则山高_______米.14.已知平面的法向量分别为,,若,则的值为___15.双曲线的右焦点到C的渐近线的距离为,则C渐近线方程为______16.在的展开式中,含项的系数为______(结果用数值表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)求下列函数的导数(1);(2)18.(12分)在等差数列中,已知公差,前项和(其中)(1)求;(2)求和:19.(12分)已知椭圆的离心率为,右焦点为F,且E上一点P到F的最大距离3(1)求椭圆E的方程;(2)若A,B为椭圆E上的两点,线段AB过点F,且其垂直平分线交x轴于H点,,求20.(12分)已知数列的前n项和为,且(1)证明数列是等比数列,并求出数列的通项公式;(2)在与之间插入n个数,使得包括与在内的这个数成等差数列,其公差为,求数列的前n项和21.(12分)已知圆C1圆心为坐标原点,且与直线相切(1)求圆C1的标准方程;(2)若直线l过点M(1,2),直线l被圆C1所截得的弦长为,求直线l的方程22.(10分)已知抛物线,过点作直线(1)若直线的斜率存在,且与抛物线只有一个公共点,求直线的方程(2)若直线过抛物线的焦点,且交抛物线于两点,求弦长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】依据抛物线定义可以证明:以过抛物线焦点F的弦PQ为直径的圆与其准线相切,则可以顺利求得线段的长.【详解】抛物线的焦点F,准线取PQ中点H,分别过P、Q、H作抛物线准线的垂线,垂足分别为N、M、E则四边形为直角梯形,为梯形中位线,由抛物线定义可知,,,则故,即点H到抛物线准线的距离为的一半,则以线段PQ为直径的圆与抛物线的准线相切.又以线段PQ为直径的圆与直线相切,则以线段PQ为直径的圆的直径等于直线与直线间的距离.即故选:C2、B【解析】根据单位向量的定义和向量的乘法运算计算即可.【详解】因为向量是两两垂直的单位向量,且所以.故选:B3、D【解析】由=0可求解【详解】由题意,故选:D4、D【解析】“”是“”的充分不必要条件,结合集合的包含关系,即可求出的取值范围.【详解】∵“”是“”的充分不必要条件∴或∴故选:D.【点睛】本题考查充分必要条件,根据充要条件求解参数的范围时,可把充分条件、必要条件或充要条件转化为集合间的关系,由此得到不等式(组)后再求范围.解题时要注意,在利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.5、A【解析】根据所求直线垂直于直线,设其方程为,然后将点代入求解.【详解】因为所求直线垂直于直线,所以设其方程为,又因为直线过点,所以,解得所以直线方程为:,故选:A.6、A【解析】根据关于平面对称的点的规律:横坐标、纵坐标保持不变,竖坐标变为它的相反数,即可求出点关于平面的对称点的坐标,再利用向量的坐标运算求.【详解】解:由题意,关于平面对称的点横坐标、纵坐标保持不变,竖坐标变为它的相反数,从而有点关于对称的点的坐标为(2,−1,-3).故选:A【点睛】本题以空间直角坐标系为载体,考查点关于面的对称,考查数量积的坐标运算,属于基础题7、D【解析】分析可知,直线与函数的图象有个交点,利用导数分析函数的单调性与极值,数形结合可求得实数的取值范围.【详解】令,可得,构造函数,其中,由题意可知,直线与函数的图象有个交点,,由,可得或,列表如下:增极大值减极小值增所以,,,作出直线与函数的图象如下图所示:由图可知,当时,即当时,直线与函数的图象有个交点,即函数有个零点.故选:D.8、B【解析】结合已知条件,利用对称的概念即可求解.【详解】不妨设点关于轴对称的点的坐标为,则线段垂直于轴且的中点在轴,从而点关于轴对称的点的坐标为.故选:B.9、C【解析】令,结合题意可得,利用导数讨论函数的单调性,进而得出,变形即可得出结果.【详解】令,则,又,所以,令,令,所以函数在上单调递减,在单调递增,所以,即,则.故选:C10、C【解析】由题意可知设,由可得,可求得,,根据模长公式计算即可得出结果.【详解】由题意可知,准线方程为,设,可知,,解得:,代入到抛物线方程可得:.,故选:C11、A【解析】求出直线的斜率,可求得边上的高所在直线的斜率,利用点斜式可得出所求直线的方程.【详解】直线的斜率为,故边上的高所在直线的斜率为,因此,边上的高所在直线的方程为.故选:A.12、B【解析】利用复合函数求导法则即可求导.【详解】,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用正弦定理可求出各个三角形的边长,进而求出山高.【详解】解:在中,,,,可得在中,,所以由正弦定理可得:即,得在直角中,所以故答案为:.14、【解析】由平面互相垂直可知其对应的法向量也垂直,然后用空间向量垂直的坐标运算求解即可.【详解】∵,∴平面的法向量互相垂直,∴,即,解得,故答案为:.15、【解析】根据给定条件求出双曲线渐近线,再用点到直线的距离公式计算作答【详解】双曲线的渐近线为:,即,依题意,,即,解得,所以C渐近线方程为.故答案为:16、12【解析】通过二次展开式就可以得到.【详解】的展开式中含含项的系数为故答案为:12三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】(1)导数四则运算中的乘除法则.(2)求导数,主要考查复合函数,外导乘内导.【小问1详解】【小问2详解】.18、(1)12(2)18【解析】(1)根据已知的,利用等差数列的通项公式和前n项和公式即可列式求解;(2)由第(1)问中求解出的的通项公式,要求前12项绝对值的和,可以发现,该数列前6项为正项,后6项为负项,因此在算和的时候,后6项和可以取原通项公式的相反数即可计算,即为,然后再加上前6项和,即为要求的前12项绝对值的和.【小问1详解】由题意可得,在等差数列中,已知公差,前项和所以,解之得,所以n=12【小问2详解】由(1)可知数列{an}的通项公式为,所以即19、(1);(2)【解析】(1)根据离心率和最大距离建立等式即可求解;(2)根据弦长,求出直线方程,解出点的坐标即可得解.【详解】(1)椭圆的离心率为,右焦点为F,且E上一点P到F的最大距离3,所以,所以,所以椭圆E的方程;(2)A,B为椭圆E上的两点,线段AB过点F,且其垂直平分线交x轴于H点,所以线段AB所在直线斜率一定存在,所以设该直线方程代入,整理得:,设,,,整理得:,当时,线段中点坐标,中垂线方程:,;当时,线段中点坐标,中垂线方程:,,综上所述:.20、(1)证明见解析,(2)【解析】(1)根据公式得到,得到,再根据等比数列公式得到答案.(2)根据等差数列定义得到,再利用错位相减法计算得到答案.【小问1详解】,当时,,得到;当时,,两式相减得到,整理得到,即,故,数列是首项为,公比为的等比数列,,即,验证时满足条件,故.【小问2详解】,故,,,两式相减得到:,整理得到:,故.21、(1)(2)或【解析】(1)由圆心到直线的距离求得半径,可得圆C1的标准方程;(2)当直线的斜率不存在时,求得直线l被圆C1所截得的弦长为,符合题意;当直线l的斜率存在时,设出直线方程,由已知弦长可得圆心到直线的距离,再由点到直线的距离公式列式求k,则直线方程可求【小问1详解】∵原点O到直线的距离为,∴圆C1的标准方程为;【小问2详解】当直线l的斜率不存在时,直线方程为x=1,代入,得,即直线l被圆C1所截得的弦长为,符合题意;当直线l的斜率存在时,设直线方程为,即∵直线l被圆C1所截得的弦长为,圆的半径为2,则圆心到直线l的距离,解得∴直线l的方程为,即综上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论