版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省苏州五中2024届数学高二上期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若两条直线与互相垂直,则的值为()A.4 B.-4C.1 D.-12.若方程表示焦点在轴上的双曲线,则角所在象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限3.若直线被圆截得的弦长为,则的最小值为()A. B.C. D.4.设函数是定义在上的函数的导函数,有,若,,则,,的大小关系是()A. B.C. D.5.对于三次函数,给出定义:设是函数的导数,是的导数,若方程有实数解,则称点为函数的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数图象都有对称中心,且“拐点”就是对称中心.设函数,则()A. B.C. D.6.若,则的虚部为()A. B.C. D.7.如果在一实验中,测得的四组数值分别是,则y与x之间的回归直线方程是()A. B.C. D.8.复数的共轭复数的虚部为()A. B.C. D.9.已知,,,则,,的大小关系是A. B.C. D.10.我国古代数学著作《算法统宗》中有这样一段记载:“一百八十九里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人共行走了189里的路程,第一天健步行走,从第二天起,因脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天行走的路程为()A.108里 B.96里C.64里 D.48里11.若圆与圆相切,则的值为()A. B.C.或 D.或12.已知数列{}满足,且,若,则=()A.-8 B.-11C.8 D.11二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有个点,相应的图案中点的个数记为,按此规律,则___________,___________.14.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.15.设O为坐标原点,抛物线的焦点为F,P为抛物线上一点,若,则的面积为____________16.已知焦点在轴上的双曲线,其渐近线方程为,焦距为,则该双曲线的标准方程为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)随着生活条件的改善,人们健身意识的增强,健身器械比较畅销,某商家为了解某种健身器械如何定价可以获得最大利润,现对这种健身器械进行试销售.统计后得到其单价x(单位:百元)与销量y(单位:个)的相关数据如下表:单价x(百元/个)3035404550日销售量y(个)1401301109080(1)已知销量y与单价x具有线性相关关系,求y关于x的线性回归方程;(2)若每个健身器械的成本为25百元,试销售结束后,请利用(1)中所求的线性回归方程确定单价为多少百元时,销售利润最大?(结果保留到整数),附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.参考数据:.18.(12分)在正方体中,,,分别是,,的中点.(1)证明:平面平面;(2)求直线与所成角的正切值.19.(12分)已知圆与直线(1)若,直线与圆相交与,求弦长(2)若直线与圆无公共点求的取值范围20.(12分)已知椭圆M:的离心率为,左顶点A到左焦点F的距离为1,椭圆M上一点B位于第一象限,点B与点C关于原点对称,直线CF与椭圆M的另一交点为D(1)求椭圆M的标准方程;(2)设直线AD的斜率为,直线AB的斜率为.求证:为定值21.(12分)已知函数,其中(1)讨论的单调性;(2)若不等式对一切恒成立,求实数k的最大值22.(10分)已知圆,直线(1)求证:对,直线l与圆C总有两个不同交点;(2)当时,求直线l被圆C截得的弦长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据两直线垂直的充要条件知:,即可求的值.【详解】由两直线垂直,可知:,即.故选:A2、D【解析】根据题意得出的符号,进而得到的象限.【详解】由题意,,所以在第四象限.故选:D.3、D【解析】先根据已知条件得出,再利用基本不等式求的最小值即可.【详解】圆的标准方程为,圆心为,半径为,若直线被截得弦长为,说明圆心在直线:上,即,即,∴,当且仅当,即时,等号成立故选:D.【点睛】本题主要考查利用基本不等式求最值,本题关键是求出,属常规考题.4、C【解析】设,求导分析的单调性,又,,,即可得出答案【详解】解:设,则,又因为,所以,所以在上单调递增,又,,,因为,所以,所以.故选:C5、B【解析】根据“拐点”的概念可判断函数的对称中心,进而求解.【详解】,,,令,解得:,而,故函数关于点对称,,,故选:B.6、A【解析】根据复数的运算化简,由复数概念即可求解.【详解】因为,所以的虚部为,故选:A7、B【解析】根据已知数据求样本中心点,由样本中心点在回归直线上,将其代入各选项的回归方程验证即可.【详解】由题设,,因为回归直线方程过样本点中心,A:,排除;B:,满足;C:,排除;D:,排除.故选:B8、B【解析】先根据复数除法与加法运算求解得,再求共轭复数及其虚部.【详解】解:,所以其共轭复数为,其虚部为故选:B9、B【解析】若对数式的底相同,直接利用对数函数的性质判断即可,若底不同,则根据结构构造函数,利用函数的单调性判断大小【详解】对于的大小:,,明显;对于的大小:构造函数,则,当时,在上单调递增,当时,在上单调递减,即对于的大小:,,,故选B【点睛】将两两变成结构相同的对数形式,然后利用对数函数的性质判断,对于结构类似的,可以通过构造函数来来比较大小,此题是一道中等难度的题目10、B【解析】根据题意,记该人每天走的路程里数为,分析可得每天走的路程里数构成以的为公比的等比数列,由求得首项即可【详解】解:根据题意,记该人每天走的路程里数为,则数列是以的为公比的等比数列,又由这个人走了6天后到达目的地,即,则有,解可得:,故选:B.【点睛】本题考查数列的应用,涉及等比数列的通项公式以及前项和公式的运用,注意等比数列的性质的合理运用.11、C【解析】分类讨论:当两圆外切时,圆心距等于半径之和;当两圆内切时,圆心距等于半径之差,即可求解.【详解】圆的圆心为,半径为,圆的圆心为,半径为.①当两圆外切时,有,此时.②当两圆内切时,有,此时.综上,当时两圆外切;当时两圆内切.故选:C【点睛】本题考查了圆与圆的位置关系,解答两圆相切问题时易忽略两圆相切包括内切和外切两种情况.解答时注意分类讨论,属于基础题.12、C【解析】利用递推关系,结合取值,求得即可.【详解】因为,且,,故可得,解得(舍),;同理求得,,.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】利用题中所给规律求出即可.【详解】解:由图可知,,,,,因为符合等差数列的定义且公差为所以,所以,故答案为:,.14、160【解析】∵某个年级共有980人,要从中抽取280人,∴抽取比例为,∴此样本中男生人数为,故答案为160.考点:本题考查了分层抽样的应用点评:掌握分层抽样的概念是解决此类问题的关键,属基础题15、【解析】根据抛物线定义求出点坐标,即可求出面积.【详解】由题可得,设,则由抛物线定义可得,解得,代入抛物线方程可得,所以.故答案为:.16、【解析】根据渐近线方程、焦距可得,,再根据双曲线参数关系、焦点的位置写出双曲线标准方程.详解】由题设,可知:,,∴由,可得,,又焦点在轴上,∴双曲线的标准方程为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)确定单价为50百元时,销售利润最大.【解析】(1)根据参考公式和数据求出,进而求出线性回归方程;(2)设出定价,结合(1)求出利润,进而通过二次函数的性质求得答案.【小问1详解】由题意,,则,,结合参考数据可得,,所以线性回归方程为.【小问2详解】设定价为x百元,利润为,则,由题意,则(百元)时,最大.故确定单价为50百元时,销售利润最大.18、(1)证明见解析(2)【解析】(1)分别证明∥平面,∥平面,最后利用面面平行的判定定理证明平面∥平面即可;(2)由∥得即为直线与所成角,在直角△即可求解.【小问1详解】∵∥且EN平面MNE,BC平面MNE,∴BC∥平面MNE,又∵∥且EM平面MNE,平面MNE,∴∥平面MNE又∵,∴平面∥平面,【小问2详解】由(1)得∥,∴为直线MN与所成的角,设正方体的棱长为a,在△中,,,∴.19、(1);(2)或.【解析】(1)求出圆心到直线的距离,再由垂径定理求弦长;(2)由圆心到直线的距离大于半径列式求解的范围【详解】解:(1)圆,圆心为,半径,圆心到直线的距离为,弦长(2)若直线与圆无公共点,则圆心到直线的距离大于半径解得或20、(1)(2)证明见解析【解析】(1)根据椭圆离心率公式,结合椭圆的性质进行求解即可;(2)设出直线CF的方程与椭圆方程联立,根据斜率公式,结合一元二次方程根与系数关系进行求解即可.【小问1详解】(1),,∴,,,∴;【小问2详解】设,,则,CF:联立∴,∴【点睛】关键点睛:利用一元二次方程根与系数的关系是解题的关键.21、(1)答案见解析(2)【解析】(1)先对函数求导,然后分和讨论导数的正负,从而可求出函数的单调区间,(2)由题意得恒成立,构造函数,利用导数求出其最小值即可【小问1详解】由,得当时,恒成立,∴在上单调递增当时,令,得,得,∴在上单调递增,在上单调递减综上所述:当时,在上单调递增;当时,在上单调递增,在上单调递减【小问2详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度二零二五年度轮胎维修与绿色出行推广合同
- 二零二五年度2025年度解除反聘项目管理合同协议
- 二零二五年度终止合伙合同-智慧城市建设合作终止协议
- 二零二五年度私人土地租赁合同:文化创意产业园租赁合同
- 二零二五年度智慧城市建设代理合同终止条件及城市治理
- 二零二五年度电子产品企业财务代理记帐服务合同
- 二零二五年度股权质押借款协议书:人工智能与智慧城市融合项目股权质押借款合同
- 2025年度篮球运动员与俱乐部合同续约谈判记录合同
- 2025年度美容行业美容培训讲师劳动合同
- 2025年度二零二五年度私下房屋买卖及产权过户手续代理合同
- 2025开工大吉蛇年大吉开门红模板
- 锅炉、压力容器制造质量手册含程序文件-符合TSG07-2019《许可规则》
- 逻辑思维训练500题(带答案)
- 人工智能大模型
- 极简统计学(中文版)
- 2024年资格考试-对外汉语教师资格证笔试参考题库含答案
- 2024年4月自考02382管理信息系统答案及评分参考
- (苏版)初三化学上册:第2单元课题1空气
- 2023年12月广东珠海市轨道交通局公开招聘工作人员1人笔试近6年高频考题难、易错点荟萃答案带详解附后
- 腹腔镜肾上腺肿瘤切除术查房护理课件
- 专题23平抛运动临界问题相遇问题类平抛运和斜抛运动
评论
0/150
提交评论