




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京市江浦高级中学2024届数学高二上期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.日常饮用水通常都是经过净化的,随若水纯净度的提高,所需净化费用不断增加.已知水净化到纯净度为时所需费用单位:元为那么净化到纯净度为时所需净化费用的瞬时变化率是()元/t.A. B.C. D.2.如图,在正方体ABCD-EFGH中,P在棱BC上,BP=x,平行于BD的直线l在正方形EFGH内,点E到直线l的距离记为d,记二面角为A-l-P为θ,已知初始状态下x=0,d=0,则()A.当x增大时,θ先增大后减小 B.当x增大时,θ先减小后增大C.当d增大时,θ先增大后减小 D.当d增大时,θ先减小后增大3.如图,、分别为椭圆的左、右焦点,为椭圆上的点,是线段上靠近的三等分点,为正三角形,则椭圆的离心率为()A. B.C. D.4.若圆C:上有到的距离为1的点,则实数m的取值范围为()A. B.C. D.5.设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为()A. B.3C. D.26.若直线的一个方向向量为,直线的一个方向向量为,则直线与所成的角为()A30° B.45°C.60° D.90°7.某超市收银台排队等候付款的人数及其相应概率如下:排队人数01234概率0.10.16030.30.10.04则至少有两人排队的概率为()A.0.16 B.0.26C.0.56 D.0.748.已知,分别是圆和圆上的动点,点在直线上,则的最小值是()A. B.C. D.9.命题“,”的否定是A, B.,C., D.,10.“”是“方程表示双曲线”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.已知直线:恒过点,过点作直线与圆:相交于A,B两点,则的最小值为()A. B.2C.4 D.12.数列1,-3,5,-7,9,…的一个通项公式为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.分别过椭圆的左、右焦点、作两条互相垂直的直线、,它们的交点在椭圆的内部,则椭圆的离心率的取值范围是________14.已知偶函数部分图象如图所示,且,则不等式的解集为______.15.椭圆的右焦点是,两点是椭圆的左顶点和上顶点,若△是直角三角形,则椭圆的离心率是________.16.过圆内的点作一条直线,使它被该圆截得的线段最长,则直线的方程是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线C:(a>0,b>0)的离心率为,且双曲线的实轴长为2(1)求双曲线C的方程;(2)已知直线x-y+m=0与双曲线C交于不同的两点A、B,且线段AB中点在圆x2+y2=17上,求m的值18.(12分)已知函数(1)求函数在区间上的最大值和最小值;(2)求出方程的解的个数19.(12分)已知两点(1)求以线段为直径的圆C的方程;(2)在(1)中,求过M点的圆C的切线方程20.(12分)冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在中国北京和张家口举行.为了弘扬奥林匹克精神,增强学生的冬奥会知识,广安市某中学校从全校随机抽取50名学生参加冬奥会知识竞赛,并根据这50名学生的竞赛成绩,绘制频率分布直方图(如图所示),其中样本数据分组区间(1)求频率分布直方图中a的值:(2)求这50名学生竞赛成绩的众数和中位数.(结果保留一位小数)21.(12分)已知圆,直线(1)证明直线与圆C一定有两个交点;(2)求直线与圆相交的最短弦长,并求对应弦长最短时的直线方程22.(10分)已知圆:,直线:.圆与圆关于直线对称(1)求圆的方程;(2)点是圆上的动点,过点作圆的切线,切点分别为、.求四边形面积的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题意求出函数的导函数,然后令即可求解【详解】因为,所以,则,故选:2、C【解析】以F为坐标原点,FB,FG,FE所在直线为x轴,y轴,z轴建立空间直角坐标系,设正方体的棱长为2,则P(2,x,0),A(2,0,2),设直线l与EF,EH交于点M、N,,求得平面AMN的法向量为,平面PMN的法向量,由空间向量的夹角公式表示出,对于A,B选项,令d=0,则,由函数的单调性可判断;对于C,D,当x=0时,则,令,利用导函数研究函数的单调性可判断.【详解】解:由题意,以F为坐标原点,FB,FG,FE所在直线为x轴,y轴,z轴建立空间直角坐标系如图所示,设正方体的棱长为2,则P(2,x,0),A(2,0,2),设直线l与EF,EH交于点M、N,则,所以,,设平面AMN的法向量为,则,即,令,则,设平面PMN的法向量为,则,即,令,则,,对于A,B选项,令d=0,则,显示函数在是为减函数,即减小,则增大,故选项A,B错误;对于C,D,对于给定的,如图,过作,垂足为,过作,垂足为,过作,垂足为,当在下方时,,设,则对于给定的,为定值,此时设二面角为,二面角为,则二面角为,且,故,而,故即,当时,为减函数,故为增函数,当时,为增函数,故为减函数,故先增后减,故D错误.当在上方时,,则对于给定的,为定值,则有二面角为,且,因,故为增函数,故为减函数,综上,对于给定的,随的增大而减少,故选:C.3、D【解析】根据椭圆定义及正三角形的性质可得到\,再在中运用余弦定理得到、的关系,进而求得椭圆的离心率【详解】由椭圆的定义知,,则,因为正三角形,所以,在中,由余弦定理得,则,,故选:D【点睛】本题考查椭圆的离心率的求解,考查考生的逻辑推理能力及运算求解能力,属于中等题.4、C【解析】利用圆与圆的位置关系进行求解即可.【详解】将圆C的方程化为标准方程得,所以.因为圆C上有到的距离为1的点,所以圆C与圆:有公共点,所以因为,所以,解得,故选:C5、B【解析】由是以P为直角直角三角形得到,再利用双曲线的定义得到,联立即可得到,代入中计算即可.【详解】由已知,不妨设,则,因为,所以点在以为直径的圆上,即是以P为直角顶点的直角三角形,故,即,又,所以,解得,所以故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.6、C【解析】直接由公式,计算两直线的方向向量的夹角,进而得出直线与所成角的大小【详解】因为,,所以,所以,所以直线与所成角的大小为故选:C7、D【解析】利用互斥事件概率计算公式直接求解【详解】由某超市收银台排队等候付款的人数及其相应概率表,得:至少有两人排队的概率为:故选:D【点睛】本题考查概率的求法、互斥事件概率计算公式,考查运算求解能力,是基础题8、B【解析】由已知可得,,求得关于直线的对称点为,则,计算即可得出结果.【详解】由题意可知圆的圆心为,半径,圆的圆心为,半径设关于直线的对称点为,则解得,则因为,分别在圆和圆上,所以,,则因为,所以故选:B.9、C【解析】特称命题的否定是全称命题,并将结论加以否定,所以命题的否定为:,考点:全称命题与特称命题10、A【解析】方程表示双曲线则,解得,是“方程表示双曲线”的充分不必要条件.故选:A11、A【解析】根据将最小值问题转化为d取得最大值问题,然后结合图形可解.【详解】将,变形为,故直线恒过点,圆心,半径,已知点P在圆内,过点作直线与圆相交于A,两点,记圆心到直线的距离为d,则,所以当d取得最大值时,有最小值,结合图形易知,当直线与线段垂直的时候,d取得最大值,即取得最小值,此时,所以.故选:A.12、C【解析】观察,奇偶相间排列,偶数位置为负,所以为,数字是奇数,满足2n-1,所以可求得通项公式.【详解】由符号来看,奇数项为正,偶数项为负,所以符号满足,由数值1,3,5,7,9…显然满足奇数,所以满足2n-1,所以通项公式为,选C.【点睛】本题考查观察法求数列的通项公式,解题的关键是培养对数字的敏锐性,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据条件可知以为直径的圆在椭圆的内部,可得,再根据,即可求得离心率的取值范围.【详解】根据条件可知,以为直径的圆与椭圆没有交点,即,即,,即.故填:.【点睛】本题考查椭圆离心率的取值范围,求椭圆离心率是常考题型,涉及的方法包含1.根据直接求,2.根据条件建立关于的齐次方程求解,3.根据几何关系找到的等量关系求解.14、【解析】由函数的图象得出当时,,再由函数是偶函数,其图象的性质,即可得出答案.【详解】是偶函数,且,所以,由图象得当时,.又函数是偶函数,其图像关于y轴对称,当时,,所以不等式的解集为.故答案为:.15、【解析】由题设易知,应用斜率的两点式及椭圆参数关系可得,进而求椭圆离心率.【详解】由题设,,,,又△是直角三角形,显然,所以,可得,则,解得,又,所以.故答案为:.16、【解析】当直线l过圆心时满足题意,进而求出答案.【详解】圆的标准方程为:,圆心,当l过圆心时满足题意,,所以l的方程为:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由实轴长求得,再由离心率得,从而求得得双曲线方程;(2)直线方程与双曲线方程联立方程组,消元后应用韦达定理求得中点坐标,代入圆方程可求得值【小问1详解】由已知,,又,所以,,所以双曲线方程为;【小问2详解】由,得,恒成立,设,,中点为,所以,,,又在圆x2+y2=17上,所以,18、(1)f(x)的最大值为7,最小值为-33;(2)见解析.【解析】(1)求函数f(x)的导数,列表求其单调性即可;(2)求出函数f(x)的极值即可.【小问1详解】023+-+f(-2)=-33↗f(0)=7↘f(2)=-1↗f(3)=7∴f(x)的最大值为7,最小值为-33;【小问2详解】02+-+↗f(0)=7↘f(2)=-1↗当a<-1或a>7时,方程有一个根;当a=-1或7时,方程有两个根;当-1<a<7时,方程有三个根.19、(1);(2).【解析】(1)求出圆心和半径即可得到答案;(2)根据题意先求出切线的斜率,进而通过点斜式求出切线方程.【小问1详解】由题意,圆心,半径,则圆C的方程为:.【小问2详解】由题意,,则切线斜率为-1,所以切线方程为:.20、(1)(2)众数;中位数【解析】(1)根据频率分布直方图矩形面积和为1列式即可;(2)根据众数即最高矩形中间值,中位数左右两边矩形面积各为0.5列式即可.【小问1详解】由,得【小问2详解】50名学生竞赛成绩的众数为设中位数为,则解得所以这50名学生竞赛成绩的中位数为76.421、(1)证明见解析(2)答案见解析【解析】(1)由,变形为求解直线过的定点,即可得解;(2)法一:由圆心和连线与直线垂直求解;法二:由圆心到直线距离最大时求解.【小问1详解】解:,所以,令,所以直线经过定点,圆可变形为,因为,所以定点在圆内,所以直线和圆C相交,有两个交点;【小问2详解】法一:圆心为,到距离为,圆心与连线的斜率为,最短弦与圆心和的连线垂直,所以,所以最短弦长为,直线的方程为法二:圆心到直线距离:,,要求d的最大值,则,当且仅当时,d的最大值为,所以最短弦长为,直线的方程为.22、(1)(2)【解析】(1)圆关于直线对称,半径不变,只需求出圆心对称的坐标即可.(2)将四边形面积分成两个全等的直角三角形,利用直角三角形的性质,一条直角边不变时,斜边与另外一条直角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年农林牧渔机械零配件合作协议书
- 解除经济合同协议书范文样本
- 跨学科护理带教计划
- 2025-2030中国安全排爆处理行业市场深度调研及竞争格局与投资研究报告
- 四年级语文在线讨论课计划
- 2025-2030中国均速皮托管行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国在线货运平台行业市场发展趋势与前景展望战略研究报告
- 个性化营销系统开发计划
- 2025-2030中国商业咖啡酿酒厂行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030中国可视点胶机行业市场发展趋势与前景展望战略研究报告
- GB/T 20424-2025重有色金属精矿产品中有害元素的限量规范
- TSG 23-2021 气瓶安全技术规程 含2024年第1号修改单
- 输变电工程标准化施工作业卡-线路施工部分
- 【公开课】复调音乐的巡礼+课件-高一音乐人音版必修音乐鉴赏
- 江西住建云-建设项目数字化审图·项目监管一体化平台-建设单位用户手册
- 《哈姆莱特》同步练习-统编版高中语文必修下册
- 中国近代化历程课件
- 三字经1-36课教案
- 煤化工技术概述教学课件(40张)
- [中建]市政基础设施工程质量标准化图集ppt
- 服务方案税务咨询技术服务方案参考范本15
评论
0/150
提交评论