云南省福贡县一中2023年高三第二轮复习质量检测试题数学试题_第1页
云南省福贡县一中2023年高三第二轮复习质量检测试题数学试题_第2页
云南省福贡县一中2023年高三第二轮复习质量检测试题数学试题_第3页
云南省福贡县一中2023年高三第二轮复习质量检测试题数学试题_第4页
云南省福贡县一中2023年高三第二轮复习质量检测试题数学试题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省福贡县一中2023年高三第二轮复习质量检测试题数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个几何体的三视图如图所示,则该几何体的表面积为()A. B.C. D.2.近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:①可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;②可以估计不足的大学生使用主要玩游戏;③可以估计使用主要找人聊天的大学生超过总数的.其中正确的个数为()A. B. C. D.3.有一改形塔几何体由若千个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是()A.8 B.7 C.6 D.44.把满足条件(1),,(2),,使得的函数称为“D函数”,下列函数是“D函数”的个数为()①②③④⑤A.1个 B.2个 C.3个 D.4个5.在等差数列中,若为前项和,,则的值是()A.156 B.124 C.136 D.1806.如图,在三棱锥中,平面,,现从该三棱锥的个表面中任选个,则选取的个表面互相垂直的概率为()A. B. C. D.7.的展开式中的系数是()A.160 B.240 C.280 D.3208.从集合中随机选取一个数记为,从集合中随机选取一个数记为,则在方程表示双曲线的条件下,方程表示焦点在轴上的双曲线的概率为()A. B. C. D.9.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()A.36cm3 B.48cm3 C.60cm3 D.72cm310.函数的图象向右平移个单位得到函数的图象,并且函数在区间上单调递增,在区间上单调递减,则实数的值为()A. B. C.2 D.11.设i为数单位,为z的共轭复数,若,则()A. B. C. D.12.已知正四面体的棱长为,是该正四面体外接球球心,且,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止),由用户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,…,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为__________.14.设双曲线的左焦点为,过点且倾斜角为45°的直线与双曲线的两条渐近线顺次交于,两点若,则的离心率为________.15.如图,在矩形中,为边的中点,,,分别以、为圆心,为半径作圆弧、(在线段上).由两圆弧、及边所围成的平面图形绕直线旋转一周,则所形成的几何体的体积为.16.的展开式中二项式系数最大的项的系数为_________(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某企业现有A.B两套设备生产某种产品,现从A,B两套设备生产的大量产品中各抽取了100件产品作为样本,检测某一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图1是从A设备抽取的样本频率分布直方图,表1是从B设备抽取的样本频数分布表.图1:A设备生产的样本频率分布直方图表1:B设备生产的样本频数分布表质量指标值频数2184814162(1)请估计A.B设备生产的产品质量指标的平均值;(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在内的定为一等品,每件利润240元;质量指标值落在或内的定为二等品,每件利润180元;其它的合格品定为三等品,每件利润120元.根据图1、表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.企业由于投入资金的限制,需要根据A,B两套设备生产的同一种产品每件获得利润的期望值调整生产规模,请根据以上数据,从经济效益的角度考虑企业应该对哪一套设备加大生产规模?18.(12分)如图,在三棱锥A­BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.19.(12分)已知函数,其中.(1)讨论函数的零点个数;(2)求证:.20.(12分)已知函数(I)若讨论的单调性;(Ⅱ)若,且对于函数的图象上两点,存在,使得函数的图象在处的切线.求证:.21.(12分)已知x∈R,设,,记函数.(1)求函数取最小值时x的取值范围;(2)设△ABC的角A,B,C所对的边分别为a,b,c,若,,求△ABC的面积S的最大值.22.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

由题意首先确定几何体的空间结构特征,然后结合空间结构特征即可求得其表面积.【详解】由三视图可知,该几何体为边长为正方体挖去一个以为球心以为半径球体的,如图,故其表面积为,故选:B.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.2、C【解析】

根据利用主要听音乐的人数和使用主要看社区、新闻、资讯的人数作大小比较,可判断①的正误;计算使用主要玩游戏的大学生所占的比例,可判断②的正误;计算使用主要找人聊天的大学生所占的比例,可判断③的正误.综合得出结论.【详解】使用主要听音乐的人数为,使用主要看社区、新闻、资讯的人数为,所以①正确;使用主要玩游戏的人数为,而调查的总人数为,,故超过的大学生使用主要玩游戏,所以②错误;使用主要找人聊天的大学生人数为,因为,所以③正确.故选:C.【点睛】本题考查统计中相关命题真假的判断,计算出相应的频数与频率是关键,考查数据处理能力,属于基础题.3、A【解析】

则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,以此类推,能求出改形塔的最上层正方体的边长小于1时该塔形中正方体的个数的最小值的求法.【详解】最底层正方体的棱长为8,则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,从下往上第五层正方体的棱长为:,从下往上第六层正方体的棱长为:,从下往上第七层正方体的棱长为:,从下往上第八层正方体的棱长为:,∴改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是8.故选:A.【点睛】本小题主要考查正方体有关计算,属于基础题.4、B【解析】

满足(1)(2)的函数是偶函数且值域关于原点对称,分别对所给函数进行验证.【详解】满足(1)(2)的函数是偶函数且值域关于原点对称,①不满足(2);②不满足(1);③不满足(2);④⑤均满足(1)(2).故选:B.【点睛】本题考查新定义函数的问题,涉及到函数的性质,考查学生逻辑推理与分析能力,是一道容易题.5、A【解析】

因为,可得,根据等差数列前项和,即可求得答案.【详解】,,.故选:A.【点睛】本题主要考查了求等差数列前项和,解题关键是掌握等差中项定义和等差数列前项和公式,考查了分析能力和计算能力,属于基础题.6、A【解析】

根据线面垂直得面面垂直,已知平面,由,可得平面,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率.【详解】由已知平面,,可得,从该三棱锥的个面中任选个面共有种不同的选法,而选取的个表面互相垂直的有种情况,故所求事件的概率为.故选:A.【点睛】本题考查古典概型概率,解题关键是求出基本事件的个数.7、C【解析】

首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.【详解】由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是.故选:C【点睛】本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.8、A【解析】

设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,分别计算出,再利用公式计算即可.【详解】设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,由题意,,,则所求的概率为.故选:A.【点睛】本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.9、B【解析】试题分析:该几何体上面是长方体,下面是四棱柱;长方体的体积,四棱柱的底面是梯形,体积为,因此总的体积.考点:三视图和几何体的体积.10、C【解析】由函数的图象向右平移个单位得到,函数在区间上单调递增,在区间上单调递减,可得时,取得最大值,即,,,当时,解得,故选C.点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出,根据函数在区间上单调递增,在区间上单调递减可得时,取得最大值,求解可得实数的值.11、A【解析】

由复数的除法求出,然后计算.【详解】,∴.故选:A.【点睛】本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键.12、A【解析】

如图设平面,球心在上,根据正四面体的性质可得,根据平面向量的加法的几何意义,重心的性质,结合已知求出的值.【详解】如图设平面,球心在上,由正四面体的性质可得:三角形是正三角形,,,在直角三角形中,,,,,,因为为重心,因此,则,因此,因此,则,故选A.【点睛】本题考查了正四面体的性质,考查了平面向量加法的几何意义,考查了重心的性质,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

首先判断出中间号码的所有可能取值,由此求得基本事件的总数以及中间数字是的事件数,根据古典概型概率计算公式计算出所求概率.【详解】根据“钟型验证码”中间数字最大,然后向两边对称递减,所以中间的数字可能是.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.所以该验证码的中间数字是7的概率为.故答案为:【点睛】本小题主要考查古典概型概率计算,考查分类加法计数原理、分类乘法计数原理的应用,考查运算求解能力,属于中档题.14、【解析】

设直线的方程为,与联立得到A点坐标,由得,,代入可得,即得解.【详解】由题意,直线的方程为,与联立得,,由得,,从而,即,从而离心率.故答案为:【点睛】本题考查了双曲线的离心率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.15、【解析】由题意,可得所得到的几何体是由一个圆柱挖去两个半球而成;其中,圆柱的底面半径为1,母线长为2;体积为;两个半球的半径都为1,则两个半球的体积为;则所求几何体的体积为.考点:旋转体的组合体.16、5670【解析】

根据二项式展开的通项,可得二项式系数的最大项,可求得其系数.【详解】二项展开式一共有项,所以由二项式系数的性质可知二项式系数最大的项为第5项,系数为.故答案为:5670【点睛】本题考查了二项式定理展开式的应用,由通项公式求二项式系数,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)30.2,29;(2)B设备【解析】

(1)平均数的估计值为组中值与频率乘积的和;(2)要注意指标值落在内的产品才视为合格品,列出A、B设备利润分布列,算出期望即可作出决策.【详解】(1)A设备生产的样本的频数分布表如下质量指标值频数41640121810.根据样本质量指标平均值估计A设备生产一件产品质量指标平均值为30.2.B设备生产的样本的频数分布表如下质量指标值频数2184814162根据样本质量指标平均值估计B设备生产一件产品质量指标平均值为29.(2)A设备生产一件产品的利润记为X,B设备生产一件产品的利润记为Y,X240180120PY240180120P若以生产一件产品的利润作为决策依据,企业应加大B设备的生产规模.【点睛】本题考查平均数的估计值、离散随机变量的期望,并利用期望作决策,是一个概率与统计综合题,本题是一道中档题.18、(1)见解析(2)见解析【解析】试题分析:(1)先由平面几何知识证明,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得平面,则,再由AB⊥AD及线面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.试题解析:证明:(1)在平面内,因为AB⊥AD,,所以.又因为平面ABC,平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因为平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因为AC平面ABC,所以AD⊥AC.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.19、(1)时,有一个零点;当且时,有两个零点;(2)见解析【解析】

(1)利用的导函数,求得的最大值的表达式,对进行分类讨论,由此判断出的零点的个数.(2)由,得到和,构造函数,利用导数证得,即有,从而证得,即.【详解】(1),∴当时,,当时,在上递增,在上递减,.令在上递减,在上递增,,当且仅当时取等号.①时,有一个零点;②时,,此时有两个零点;③时,,令在上递增,,此时有两个零点;综上:时,有一个零点;当且时,有两个零点;(2)由(1)可知:,令在上递增,.【点睛】本小题主要考查利用导数研究函数的零点,考查利用导数证明不等式,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于中档题.20、(1)见解析(2)见证明【解析】

(1)对函数求导,分别讨论,以及,即可得出结果;(2)根据题意,由导数几何意义得到,将证明转化为证明即可,再令,设,用导数方法判断出的单调性,进而可得出结论成立.【详解】(1)解:易得,函数的定义域为,,令,得或.①当时,时,,函数单调递减;时,,函数单调递增.此时,的减区间为,增区间为.②当时,时,,函数单调递减;或时,,函数单调递增.此时,的减区间为,增区间为,.③当时,时,,函数单调递增;此时,的减区间为.综上,当时,的减区间为,增区间为:当时,的减区间为,增区间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论