版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市东北师大附中等六校2024届数学高二上期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列中,前项和为,且点在直线上,则=A. B.C. D.2.已知双曲线,过原点作一条倾斜角为的直线分别交双曲线左、右两支于、两点,以线段为直径的圆过右焦点,则双曲线的离心率为().A. B.C. D.3.有一组样本数据、、、,由这组数据得到新样本数据、、、,其中,为非零常数,则()A.两组样本数据的样本平均数相同 B.两组样本数据的样本标准差相同C.两组样本数据的样本中位数相同 D.两组样本数据的样本众数相同4.已知圆的方程为,圆的方程为,其中.那么这两个圆的位置关系不可能为()A.外离 B.外切C.内含 D.内切5.“”是“函数在上无极值”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知数列中,其前项和为,且满足,数列的前项和为,若对恒成立,则实数的值可以是()A. B.2C.3 D.7.已知,,则的最小值为()A. B.C. D.8.已知在平面直角坐标系中,圆的方程为,直线过点且与直线垂直.若直线与圆交于两点,则的面积为A.1 B.C.2 D.9.已知,命题“若,则,全为0”的否命题是()A.若,则,全不为0. B.若,不全为0,则.C.若,则,不全为0. D.若,则,全不为0.10.某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为A.11 B.12C.13 D.1411.若点在椭圆上,则该椭圆的离心率为()A. B.C. D.12.在等比数列中,,,则()A. B.或C. D.或二、填空题:本题共4小题,每小题5分,共20分。13.已知圆的半径为3,,为该圆的两条切线,为切点,则的最小值为___________.14.已知p:≤0,q:4x+2x-m≤0,若p是q的充分条件,则实数m的取值范围是________15.若在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列,现将数列进行构造,第次得到数列;第次得到数列;依次构造,第次得到数列;记,则(1)___________,(2)___________16.圆锥曲线的焦点在轴上,离心率为,则实数的值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设锐角三角形ABC的内角A、B、C的对边分别为a、b、c,.(1)求B的大小(2)若,,求b.18.(12分)已知抛物线E:过点Q(1,2),F为其焦点,过F且不垂直于x轴的直线l交抛物线E于A,B两点,动点P满足△PAB的垂心为原点O.(1)求抛物线E的方程;(2)求证:动点P在定直线m上,并求的最小值.19.(12分)已知过抛物线的焦点F且斜率为1的直线l交C于A,B两点,且(1)求抛物线C的方程;(2)求以C的准线与x轴的交点D为圆心且与直线l相切的圆的方程20.(12分)如图,已知正方体的棱长为,,分别是棱与的中点.(1)求以,,,为顶点的四面体的体积;(2)求异面直线和所成角的大小.21.(12分)在直三棱柱中,、、、分别为中点,.(1)求证:平面(2)求二面角的余弦值22.(10分)已知O为坐标原点,点P在抛物线C:上,点F为抛物线C的焦点,记P到直线的距离为d,且.(1)求抛物线C的标准方程;(2)若过点的直线l与抛物线C相切,求直线l的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】点在一次函数上的图象上,,数列为等差数列,其中首项为,公差为,,数列的前项和,,故选C考点:1、等差数列;2、数列求和2、A【解析】设双曲线的左焦点为,连接、,求得、,利用双曲线的定义可得出关于、的等式,即可求得双曲线的离心率.【详解】设双曲线的左焦点为,连接、,如下图所示:由题意可知,点为的中点,也为的中点,且,则四边形为矩形,故,由已知可知,由直角三角形的性质可得,故为等边三角形,故,所以,,由双曲线的定义可得,所以,.故选:A.3、B【解析】利用平均数公式可判断A选项;利用标准差公式可判断B选项;利用中位数的定义可判断C选项;利用众数的定义可判断D选项.【详解】对于A选项,设数据、、、的平均数为,数据、、、的平均数为,则,A错;对于B选项,设数据、、、的标准差为,数据、、、的标准差为,,B对;对于C选项,设数据、、、中位数为,数据、、、的中位数为,不妨设,则,若为奇数,则,;若为偶数,则,.综上,,C错;对于D选项,设数据、、、的众数为,则数据、、、的众数为,D错.故选:B.4、C【解析】求出圆心距的取值范围,然后利用圆心距与半径的和差关系判断.【详解】由两圆的标准方程可得,,,;则,所以两圆不可能内含.故选:C.5、B【解析】根据极值的概念,可知函数在上无极值,则方程的,再根据充分、必要条件判断,即可得到结果.【详解】由题意,可得,若函数在上无极值,所以对于方程,,解得.所以“”是“函数在上无极值”的必要不充分条件.故选:B.6、D【解析】由求出,从而可以求,再根据已知条件不等式恒成立,可以进行适当放大即可.【详解】若n=1,则,故;若,则由得,故,所以,,又因为对恒成立,当时,则恒成立,当时,,所以,,,若n为奇数,则;若n为偶数,则,所以所以,对恒成立,必须满足.故选:D7、B【解析】将代数式展开,然后利用基本不等式可求出该代数式的最小值.【详解】,,由基本不等式得,当且仅当时,等号成立.因此,的最小值为.故选B.【点睛】本题考查利用基本不等式求最值,在利用基本不等式时要注意“一正、二定、三相等”条件的成立,考查计算能力,属于中等题.8、A【解析】∵圆的方程为,即,∴圆的圆心为,半径为2.∵直线过点且与直线垂直∴直线.∴圆心到直线的距离.∴直线被圆截得的弦长,又∵坐标原点到的距离为,∴的面积为.考点:1、直线与圆的位置关系;2、三角形的面积公式.9、C【解析】根据四种命题的关系求解.【详解】因为否命题是否定原命题的条件和结论,所以命题“若,则,全为0”的否命题是:若,则,不全为0,故选:C10、B【解析】使用系统抽样方法,从840人中抽取42人,即从20人抽取1人∴从编号1~480的人中,恰好抽取480/20=24人,接着从编号481~720共240人中抽取240/20=12人考点:系统抽样11、C【解析】根据给定条件求出即可计算椭圆的离心率.【详解】因点在椭圆,则,解得,而椭圆长半轴长,所以椭圆离心率.故选:C12、C【解析】计算出等比数列的公比,即可求得的值.【详解】设等比数列的公比为,则,则,所以,.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设(),,则,,,根据数量积的定义和余弦的二倍角公式结合基本不等式即可求解详解】如图所示,设(),,则,,,,当且仅当即时等号成立,∴的最小值是.故答案为:14、m≥6【解析】分别求出p,q成立的等价条件,利用p是q的充分条件,转为当0<x≤1时,m大于等于的最大值,求出最值即可确定m的取值范围【详解】由,得0<x≤1,即p:0<x≤1由4x+2x﹣m≤0得4x+2x≤m因为,要使p是q的充分条件,则当0<x≤1时,m大于等于的最大值,令,则在上单调递增,故当时取到最大值6,所以m≥6故答案为:m≥6【点睛】本题主要考查充分条件和必要条件的应用,考查函数的最值,考查转化的思想,属于基础题15、①.②.【解析】根据题意得到,再利用叠加法求解即可.【详解】由题知:,,,所以,,,……,,所以,,……,,即,所以.故答案为:;16、【解析】根据圆锥曲线焦点在轴上且离心率小于1,确定a,b求解即可.【详解】因为圆锥曲线的焦点在轴上,离心率为,所以曲线为椭圆,且,所以,解得,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由正弦定理,可得,进而可求出和角;(2)利用余弦定理,可得,即可求出.【详解】(1)由,得,因为,所以,又因为B为锐角,所以(2)由余弦定理,可得,解得【点睛】本题考查正弦、余弦定理在解三角形中的运用,考查学生的计算求解能力,属于基础题.18、(1);(2)证明见解析,的最小值为.【解析】(1)将点的坐标代入抛物线方程,由此求得的值,进而求得抛物线的方程.(2)设出直线的方程,联立直线的方程与抛物线的方程,写出韦达定理,设出直线的方程,联立直线的方程求得的坐标,由此判断出动点在定直线上.求得的表达式,利用基本不等式求得其最小值.【详解】(1)将点坐标代入抛物线方程得,所以.(2)由(1)知抛物线的方程为,所以,设直线的方程为,设,由消去得,所以.由于为三角形的垂心,所以,所以直线的方程为,即.同理可求得直线的方程为.由,结合,解得,所以在定直线上.直线的方程为,到直线的距离为,到直线的距离为.所以,当且仅当时取等号.所以的最小值为.【点睛】本小题主要考查抛物线方程的求法,考查直线和抛物线的位置关系,考查抛物线中三角形面积的有关计算,属于中档题.19、(1);(2)【解析】(1)首先表示出直线l的方程,再联立直线与抛物线方程,消去,列出韦达定理,再根据焦点弦公式计算可得;(2)由(1)可得,再利用点到直线的距离求出半径,即可求出圆的方程;【详解】解析:(1)由已知得点,∴直线l的方程为,联立去,消去整理得设,,则,,∴抛物线C的方程为(2)由(1)可得,直线l的方程为,∴圆D的半径,∴圆D的方程为【点睛】本题考查抛物线的简单几何性质,属于中档题.20、(1)(2)【解析】(1)由题意可知该四面体为以为底面,以为高的四面体,可得四面体体积;(2)连接,,可得即为异面直线和所成的角的平面角,根据余弦定理可得角的大小.【小问1详解】解:连接,,,以,,,为顶点的四面体即为三棱锥,底面的面积,高,则其体积;【小问2详解】解:连接,,,则即为异面直线和所成的角的平面角,在中,,,,则,故,即和所成的角的的大小为.21、(1)见解析;(2)【解析】(1)取中点,连接,根据直棱柱的特征,易知,再由、分别为的中点,根据中位线定理,可得,得到四边形为平行四边形,再利用线面平行的判定定理证明.(2)取的中点,连接,以为原点,、、分别为、、轴建立空间直角坐标系,则.,再分别求得平面和平面的一个法向量,利用面面角的向量公式求解.【详解】(1)证明:如图所示:取中点,连接,易知,、分别为的中点,∴,∴故四边形为平行四边形,∴,∵平面,平面,平面(2)取的中点,连接,以为原点,、、分别为、、轴建立如图所示的空间直角坐标系,如图所示:则∴,设平面的法向量为,则,即,取,得,易知平面的一个法向量为,∴,∴二面角的余弦值为【点睛】本题主要考查线面平行的判定定理和面面角的向量求法,还考查了转化化归
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度供暖服务续约协议
- 2024年度建筑材料研发与技术转让合同
- 2024年城市废弃物处理设施租赁合同
- 2024创意拓展训练服务合同
- 2024年廉洁购销合同范本
- 2024年度安徽省某县高速公路路基施工合同
- 2024年度企业级云存储服务合同
- 2024大型活动场地土方平整合同
- 2024年度果皮箱批量采购合同
- 2024年度国际教育培训项目合作合同
- GB/T 22796-2021床上用品
- 中国联通LAN工程施工及验收规范
- 中间表模式接口相关-住院与his-adt方案
- 临床PCR检验的室内质控方法课件
- 计算机解决问题的过程-优质课课件
- 作文讲评-“忘不了……”课件
- 深基坑安全管理(安全培训)课件
- 12月4日全国法制宣传日宪法日宪法知识科普宣教PPT教学课件
- 血液透析营养管理课件
- 神经内科医疗质量评价体系考核标准
- 绿化监理实施细则
评论
0/150
提交评论