湖南省宁乡县第一高级中学2023-2024学年数学高二上期末质量跟踪监视模拟试题含解析_第1页
湖南省宁乡县第一高级中学2023-2024学年数学高二上期末质量跟踪监视模拟试题含解析_第2页
湖南省宁乡县第一高级中学2023-2024学年数学高二上期末质量跟踪监视模拟试题含解析_第3页
湖南省宁乡县第一高级中学2023-2024学年数学高二上期末质量跟踪监视模拟试题含解析_第4页
湖南省宁乡县第一高级中学2023-2024学年数学高二上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省宁乡县第一高级中学2023-2024学年数学高二上期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若关于x的不等式的解集为,则关于x的不等式的解集是()A. B.,或C.,或 D.,或,或2.若圆与圆相切,则实数a的值为()A.或0 B.0C. D.或3.已知随机变量服从正态分布,且,则()A.0.16 B.0.32C.0.68 D.0.844.甲、乙两名同学同时从教室出发去体育馆打球(路程相等),甲一半时间步行,一半时间跑步;乙一半路程步行,一半路程跑步.如果两人步行速度、跑步速度均相等,则()A.甲先到体育馆 B.乙先到体育馆C.两人同时到体育馆 D.不确定谁先到体育馆5.已知为偶函数,且当时,,其中为的导数,则不等式的解集为()A. B.C. D.6.已知抛物线过点,则抛物线的焦点坐标为()A. B.C. D.7.设,则当数列{an}的前n项和取得最小值时,n的值为()A.4 B.5C.4或5 D.5或68.某综合实践小组设计了一个“双曲线型花瓶”.他们的设计思路是将某双曲线的一部分(图1中A,C之间的曲线)绕其虚轴所在直线l旋转一周,得到花瓶的侧面,花瓶底部是平整的圆面,如图2.该小组给出了图1中的相关数据:,,,,,其中B是双曲线的一个顶点.小组中甲、乙、丙、丁四位同学分别用不同的方法估算了该花瓶的容积(忽略瓶壁和底部的厚度),结果如下表所示学生甲乙丙丁估算结果()其中估算结果最接近花瓶的容积的同学是()(参考公式:,,)A.甲 B.乙C.丙 D.丁9.已知半径为2的圆经过点(5,12),则其圆心到原点的距离的最小值为()A.10 B.11C.12 D.1310.圆与圆的公切线的条数为()A.1 B.2C.3 D.411.已知向量,,且,则的值为()A. B.C.或 D.或12.一个几何体的三视图都是半径为1的圆,在该几何体内放置一个高度为1的长方体,则长方体的体积最大值为()A. B.C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.若关于的不等式的解集为R,则的取值范围是______.14.椭圆C:的左、右焦点分别为,,P为椭圆上异于左右顶点的任意一点,、的中点分别为M、N,O为坐标原点,四边形OMPN的周长为4,则的周长是_____15.设Sn是等差数列{an}的前n项和,若数列{an}满足an+Sn=An2+Bn+C且A>0,则+B-C的最小值为________16.某班名学生期中考试数学成绩的频率分布直方图如图所示.根据频率分布直方图,估计该班本次测试平均分为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是等差数列,,.(1)求的通项公式;(2)若数列是公比为的等比数列,,求数列的前项和.18.(12分)已知椭圆,点在上,,且(1)求出直线所过定点的坐标;(不需要证明)(2)过A点作的垂线,垂足为,是否存在点,使得为定值?若存在,求出的值;若不存在,说明理由.19.(12分)已知各项均为正数的等比数列的前n项和为,且,(1)求数列的通项公式;(2)设,求数列的前n项和20.(12分)已知命题p:实数x满足;命题q:实数x满足.若p是q的必要条件,求实数a的取值范围21.(12分)已知数列中,,且满足(1)求证数列是等差数列,并求数列的通项公式;(2)求数列的前n项和22.(10分)已知圆C的圆心在直线上,且过点.(1)求圆C的方程;(2)若圆C与直线交于A,B两点,且,求m的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先利用已知一元二次不等式的解集求得参数,再代入所求不等式,利用分式大于零,则分子分母同号,列不等式计算即得结果.【详解】不等式解集为,即的二根是1和2,利用根和系数的关系可知,故不等式即转化成,即,等价于或者,解得或,或者.故解集为,或,或.故选:D.【点睛】分式不等式的解法:(1)先化简成右边为零的形式(或),等价于一元二次不等式(或)再求解即可;(2)先化简成右边为零的形式(或),再利用分子分母同号(或者异号),列不等式组求解即可.2、D【解析】根据给定条件求出两圆圆心距,再借助两圆相切的充要条件列式计算作答.【详解】圆的圆心,半径,圆的圆心,半径,而,即点不可能在圆内,则两圆必外切,于是得,即,解得,所以实数a的值为或.故选:D3、C【解析】根据对称性以及概率之和等于1求出,再由即可得出答案.【详解】∵随机变量服从正态分布,∴故选:C.4、A【解析】设出总路程与步行速度、跑步速度,表示出两人所花时间后比较不等式大小【详解】设总路程为,步行速度,跑步速度对于甲:,得对于乙:,当且仅当时等号成立,而,故,乙花时间多,甲先到体育馆故选:A5、A【解析】根据已知不等式和要求解的不等式特征,构造函数,将问题转化为解不等式.通过已知条件研究g(x)的奇偶性和单调性即可解该不等式.【详解】令,则根据题意可知,,∴g(x)是奇函数,∵,∴当时,,单调递减,∵g(x)是奇函数,g(0)=0,∴g(x)在R上单调递减,由不等式得,.故选:A.6、D【解析】把点代入抛物线方程求出,再化成标准方程可得解.【详解】因为抛物线过点,所以,所以抛物线方程为,方程化成标准方程为,故抛物线的焦点坐标为.故选:D.7、A【解析】结合等差数列的性质得到,解不等式组即可求出结果.【详解】由,即,解得,因为,故.故选:A.8、D【解析】根据几何体可分割为圆柱和曲边圆锥,利用圆柱和圆锥的体积公式对几何体的体积进行估计即可.【详解】可将几何体看作一个以为半径,高为的圆柱,再加上两个曲边圆锥,其中底面半径分别为,,高分别为,,,,所以花瓶的容积,故最接近的是丁同学的估算,故选:D9、B【解析】由条件可得圆心的轨迹是以点为圆心,半径为2的圆,然后可得答案.【详解】因为半径为2的圆经过点(5,12),所以圆心的轨迹是以点为圆心,半径为2的圆,所以圆心到原点的距离的最小值为,故选:B10、D【解析】公切线条数与圆与圆的位置关系是相关的,所以第一步需要判断圆与圆的位置关系.【详解】圆的圆心坐标为,半径为3;圆的圆心坐标为,半径为1,所以两圆的心心距为,所以两圆相离,公切线有4条.故选:D.11、C【解析】根据空间向量平行的性质得,代入数值解方程组即可.【详解】因为,所以,所以,所以,解得或.故选:C.12、B【解析】根据题意得到几何体为半径为1的球,长方体的体对角线为球的直径时,长方体体积最大,设出长方体的长和宽,得到等量关系,利用基本不等式求解体积最大值.【详解】由题意得:此几何体为半径为1的球,长方体为球的内接长方体时,体积最大,此时长方体的体对角线为球的直径,设长方体长为,宽为,则由题意得:,解得:,而长方体体积为,当且仅当时等号成立,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分为和考虑,当时,根据题意列出不等式组,求出的取值范围.【详解】当得:,满足题意;当时,要想保证关于的不等式的解集为R,则要满足:,解得:,综上:的取值范围为故答案为:14、【解析】先证明则四边形OMPN是平行四边形,进而根据椭圆定义求出a,再求出c,最后求出答案.【详解】因为M,O,N分别为的中点,所以,则四边形OMPN是平行四边形,所以,由四边形OMPN的周长为4可知,,即,则,于是的周长是.故答案为:.15、2【解析】因为{an}为等差数列,设公差为d,由an+Sn=An2+Bn+C,得a1+(n-1)d+na1+n(n-1)d=an+Sn=An2+Bn+C,即(d-A)n2+(a1+-B)n+(a1-d-C)=0对任意正整数n都成立所以(d-A)=0,a1+d-B=0,a1-d-C=0,所以A=d,B=a1+d,C=a1-d,所以3A-B+C=0.+B-C=+3A≥2.16、【解析】将每个矩形底边的中点值乘以对应矩形的面积,即可得解.【详解】由频率分布直方图可知,该班本次测试平均分为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由题意得解方程组求出,从而可求出数列的通项公式,(2)因为是公比为的等比数列,又,,所以,从而可得,然后利用分组求和法求解即可【小问1详解】设等差数列的公差为.由题意得解得,.所以.【小问2详解】因为是公比为的等比数列,又,,所以,所以.所以.18、(1)(2)存在,【解析】(1)分斜率存在和斜率不存在两种情况,当斜率存在时,设出直线方程,联立椭圆方程,利用韦达定理列出方程,求出定点坐标,当斜率不存在时,设出点的坐标进行求解;(2)结合第一问的定点坐标,结合直角三角形斜边中线得到存在点,使得为定值,求出结果.【小问1详解】设点,若直线斜率存在时,设直线的方程为:,代入椭圆方程消去并整理得:,可得,因为,所以,即,根据,代入整理可得:,所以,整理化简得:,因为不在直线上,所以,故,于是的方程为,所以直线过定点直线过定点.当直线的斜率不存在时,可得,由得:,得,结合可得:,解得:或(舍).此时直线过点【小问2详解】由(1)可知因为,取中点,则此时,【点睛】直线过定点问题,一般处理思路是分斜率存在和斜率不存在两种情况,特别是斜率存在时,设出直线为,联立后用韦达定理得到两根之和与两根之积,结合题干条件得到等量关系,求出的关系,进而得到定点坐标.19、(1)(2)【解析】(1)由等比数列的前项和公式,等比数列的基本量运算列方程组解得和公比后可得通项公式;(2)用错位相减法求得和【小问1详解】设数列的公比为q,由,,得,解之得所以;【小问2详解】,又,得,,两式作差,得,所以20、【解析】由题设得是为真时的子集,即,法一:讨论、,根据集合的包含关系求参数范围;法二:利用在恒成立,结合参变分离及指数函数的单调性求参数范围.【详解】由,得,则命题对应的集合为,设命题对应的集合为,是的必要条件,则,由,得,又,法一:若时,,则,显然成立;若时,,则,可得,综上:法二:在恒成立,即,∵在单调递减,∴.21、(1)证明见解析;;(2).【解析】(1)根据等差数列的定义证明为常数即可;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论