版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省怀化市中方县一中2023-2024学年高二数学第一学期期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在四面体中,空间的一点满足,若共面,则()A. B.C. D.2.已知双曲线,过其右焦点作渐近线的垂线,垂足为,延长交另一条渐近线于点A.已知为原点,且,则()A. B.C. D.3.已知直线,椭圆.若直线l与椭圆C交于A,B两点,则线段AB的中点的坐标为()A. B.C. D.4.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的表面积为()A. B.C.8 D.125.已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,则双曲线的方程为()A. B.C. D.6.若双曲线离心率为,过点,则该双曲线的方程为()A. B.C. D.7.不等式表示的平面区域是一个()A.三角形 B.直角三角形C.矩形 D.梯形8.已知命题是真命题,那么的取值范围是()A. B.C. D.9.在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()A. B.C. D.610.从集合中任取两个不同元素,则这两个元素相差的概率为()A. B.C. D.11.如图,在正方体中,E为的中点,则直线与平面所成角的正弦值为()A. B.C. D.12.若、且,则下列式子一定成立的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数的递增区间是,则实数______.14.若双曲线的渐近线为,则其离心率的值为_______.15.据相关数据统计,部分省市的政府工作报告将“推进5G通信网络建设”列入2020年的重点工作,2020年一月份全国共建基站3万个如果从2月份起,以后的每个月比上一个月多建设0.2万个,那么2020年这一年全国共有基站________万个16.将车行的30辆大巴车编号为01,02,…,30,采用系统抽样方法抽取一个容量为3的样本,且在某组随机抽得的一个号码为08,则剩下的两个号码依次是__________(按号码从小到大排列)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面ABCD为直角梯形,,平面ABCD,,.(1)求点B到平面PCD的距离;(2)求二面角的平面角的余弦值.18.(12分)平面直角坐标系中,过椭圆:右焦点的直线交M于A,B两点,P为AB的中点,且OP的斜率为.(1)求椭圆M的方程;(2)C,D为椭圆M上的两点,若四边形ACBD的对角线CD与AB垂直,求四边形ACBD面积的最大值.19.(12分)已知三个条件①圆心在直线上;②圆的半径为2;③圆过点在这三个条件中任选一个,补充在下面的问题中,并作答(注:如果选择多个条件分别解答,按第一个解答计分)(1)已知圆过点且圆心在轴上,且满足条件________,求圆的方程;(2)在(1)的条件下,直线与圆交于、两点,求弦长的最小值及相应的值20.(12分)已知函数,是的一个极值点.(1)求b的值;(2)当时,求函数的最大值.21.(12分)已知点F为抛物线:()的焦点,点在抛物线上且在x轴上方,.(1)求抛物线的方程;(2)已知直线与曲线交于A,B两点(点A,B与点P不重合),直线PA与x轴、y轴分别交于C、D两点,直线PB与x轴、y轴分别交于M、N两点,当四边形CDMN的面积最小时,求直线l的方程.22.(10分)已知(1)求的最小正周期及单调递增区间;(2)已知钝角内角A,B,C的对边长分别a,b,c,若,,.求a的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据四点共面的向量表示,可得结果.【详解】由共面知,故选:【点睛】本题主要考查空间中四点共面的向量表示,属基础题.2、C【解析】画出图象,结合渐近线方程得到,,进而得到,结合渐近线的斜率及角度关系,列出方程,求出,从而求出.【详解】渐近线为,如图,过点F作FB垂直于点B,交于点A,则到渐近线距离为,则,又,由勾股定理得:,则,又,,所以,解得:,所以.故选:C3、B【解析】联立直线方程与椭圆方程,消y得到关于x的一元二次方程,根据韦达定理可得,进而得出中点的横坐标,代入直线方程求出中点的纵坐标即可.【详解】由题意知,,消去y,得,则,,所以A、B两点中点的横坐标为:,所以中点的纵坐标为:,即线段AB的中点的坐标为.故选:B4、B【解析】首先确定几何体的空间结构特征,然后求解其表面积即可.【详解】由题意知,该几何体是一个由8个全等的正三角形围成的多面体,正三角形的边长为:,正三角形边上的一条高为:,所以一个正三角形的面积为:,所以多面体的表面积为:.故选:B5、A【解析】根据双曲线渐近线方程得a和b的关系,根据焦点在抛物线准线上得c的值,结合a、b、c关系即可求解.【详解】∵双曲线的一条渐近线方程是,∴,∵准线方程是,∴,∵,∴,,∴双曲线标准方程为:.故选:A.6、B【解析】分析可得,再将点代入双曲线的方程,求出的值,即可得出双曲线的标准方程.【详解】,则,,则双曲线的方程为,将点的坐标代入双曲线的方程可得,解得,故,因此,双曲线的方程为.故选:B7、D【解析】作出不等式组所表示平面区域,可得出结论.【详解】由可得或,作出不等式组所表示的平面区域如下图中的阴影部分区域所示:由图可知,不等式表示的平面区域是一个梯形.故选:D.8、C【解析】依据题意列出关于的不等式,即可求得的取值范围.【详解】当时,仅当时成立,不符合题意;当时,若成立,则,解之得综上,取值范围是故选:C9、C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.10、B【解析】一一列出所有基本事件,然后数出基本事件数和有利事件数,代入古典概型的概率计算公式,即可得解.【详解】解:从集合中任取两个不同元素的取法有、、、、、共6种,其中满足两个元素相差的取法有、、共3种.故这两个元素相差的概率为.故选:B.11、D【解析】构建空间直角坐标系,求直线的方向向量、平面的法向量,应用空间向量的坐标表示,求直线与平面所成角的正弦值.【详解】以点D为坐标原点,向量分别为x,y,z轴建立空间直角坐标系,则,,,,可得,,,设面的法向量为,有,取,则,所以,,,则直线与平面所成角的正弦值为故选:D.12、B【解析】构造函数,利用函数在上的单调性可判断AB选项;构造函数,利用函数在上的单调性可判断CD选项.【详解】对于AB选项,构造函数,其中,则,所以,函数在上单调递增,因为、且,则,即,A错B对;对于CD选项,构造函数,其中,则.当时,,此时函数单调递减,当时,,此时函数单调递增,故函数在上不单调,无法确定与的大小关系,故CD都错.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求得二次函数的单调增区间,即可求得参数的值.【详解】因为二次函数开口向上,对称轴为,故其单调增区间为,又由题可知:其递增区间是,故.故答案为:.14、【解析】利用渐近线斜率为和双曲线的关系可构造关于的齐次方程,进而求得结果.【详解】由渐近线方程可知:,即,,,(负值舍掉).故答案为:.【点睛】本题考查根据双曲线渐近线方程求解离心率的问题,关键是利用渐进线的斜率构造关于的齐次方程.15、2##【解析】由题意可知一月份到十二月份基站个数是以3为首项,0.2为公差的等差数列,根据等差数列求和公式可得答案.【详解】一月份全国共建基站3万个,2月全国共建基站万个,3月全国共建基站万个,,12月全国共建基站万个,基站个数是以3为首项,0.2为公差的等差数列,2020年这一年全国共有基站万个.故答案为:49.2.16、18,28【解析】根据等距抽样的性质确定剩下的两个号码即可.【详解】由于从30辆大巴车中抽取3辆车,故分组间距为10,又第一组的号码为08,所以其它两个号码依次是18,28故答案为:18,28.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)建立空间直角坐标系,用点到面的距离公式即可算出答案;(2)先求出两个面的法向量,然后用二面角公式即可.【小问1详解】∵平面平面∴PB⊥AB,PB⊥BC,又两两互相垂直,所以,以点为坐标原点,分别为轴,轴,轴建立如图所示的空间直角坐标系,D(3,6,0),A(0,6,0)设平面的一个法向量所以n⋅PD令,可得记点到平面的距离为,则d=【小问2详解】由(1)可知平面的一个法向量为平面的一个法向量为设二面角的平面角为由图可知,18、(1)(2)【解析】(1)设,,的中点为,利用“点差法”求解;(2)由求得A,B的坐标,进而得到的长,再根据,设直线的方程为,由,求得的长,然后由四边形的面积为求解.【小问1详解】解:把右焦点代入直线,得,设,,的中点为,则,,相减得,即,即,即.又,,则.又,解得,,故椭圆的方程为.【小问2详解】联立消去,可得,解得或,故交点为,.所以.因为,所以可设直线的方程为,,,联立消去,得到,因为直线与椭圆有两个不同的交点,则,解得,且,又,则.故四边形的面积为,故当时,取得最大值,最大值为.所以四边形的面积的最大值为.19、(1)条件选择见解析,圆的方程为(2)的最小值为,相应【解析】(1)选择条件①或②或③,求得圆心和半径,由此求得圆的方程.(2)首先求得直线过定点,根据求得最短弦长以及此时的值.【小问1详解】若选条件①,由题意知,圆心是方程的解,解得,所以,设半径为,则.则圆的方程为:若选条件②,设圆心,由题意知,所以圆心,半径为,所以圆的方程为:若选条件③,设圆心,由题意知,即有,解得,圆心为,且半径为,所以圆的方程为:【小问2详解】由(1)圆的方程为:,圆心为,半径.直线过定点,要使弦长最短,,,,,直线的斜率,也即直线的斜率为,所以.,,所以弦长最小值为20、(1);(2)【解析】(1)先求出导函数,再根据x=2是的一个极值点对应x=2是导数为0的根即可求b的值;(2)根据(1)的结论求出函数的极值点,通过比较极值与端点值的大小从而确定出最大值.【小问1详解】由题设,.∵x=2是的一个极值点,∴x=2是的一个根,代入解得:.经检验,满足题意.【小问2详解】由(1)知:,则.令,解得x=1或x=2.x1(1,2)2(2,3)30﹣0+递减递增∵当x∈(1,2)时,即在(1,2)上单调递减;当x∈(2,3)时,即在(2,3)上单调递增.∴当x∈[1,3]时,函数的最大值为与中的较大者.∴函数的最大值为.21、(1);(2)或.【解析】(1)根据给定条件结合抛物线定义求出p即可作答.(2)联立直线l与抛物线的方程,用点A,B坐标表示出点C,D,M,N的坐标,列出四边形CDMN面积的函数关系,借助均值不等式计算得解.【小问1详解】抛物线的准线:,由抛物线定义得,解得,所以抛物线的方程为.【小问2详解】因为点在上,且,则,即,依题意,,设,,由消去并整理得,则有,,直线PA的斜率是,方程为,令,则,令,则,即点C,点D,同理点M,点N,则,,四边形的面积有:,当且仅当,即时取“=”,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流行业工作计划范文
- 低保科工作计划
- 酒店销售部工作总结及计划范文
- 2025年部门销售主管工作计划范文
- 医院信息中心工作计划范文
- 政研室工作计划
- 《E芯片试产报告》课件
- 《大学有机化学》课件
- 合同 条款 内部逻辑
- 投标合同条款
- 求是文章《开创我国高质量发展新局面》专题课件
- 升压站土建施工合同2024年
- DB5334-T 12.1-2024 地理标志证明商标 香格里拉藏香猪 第1部分:品种要求
- NB-T31030-2012陆地和海上风电场工程地质勘察规范
- 感悟考古智慧树知到期末考试答案章节答案2024年北京大学
- JJF 1171-2024温湿度巡回检测仪校准规范
- 知道网课智慧树《城市地理学(华中师范大学)》章节测试答案
- 建筑信息模型技术员理论知识考试题库
- 人文英语3-02-国开机考参考资料
- 2024年全国青少年航天创新大赛航天知识竞赛试题
- 微机原理与应用智慧树知到期末考试答案章节答案2024年山东大学
评论
0/150
提交评论