版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省高中联考2024届高二上数学期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的导函数的图像如图所示,则下列判断正确的是()A.在区间上,函数增函数 B.在区间上,函数是减函数C.为函数的极小值点 D.2为函数的极大值点2.已知双曲线的离心率为5,则其标准方程为()A. B.C. D.3.已知方程表示双曲线,则实数的取值范围是()A.或 B.C. D.4.已知抛物线的焦点是双曲线的一个焦点,则双曲线的渐近线方程为()A. B.C. D.5.内角A,B,C的对边分别为a,b,c.若,则一定是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形6.命题“对任何实数,都有”的否定形式是()A.,使得B.,使得C.,使得D.,使得7.如图,在棱长为1的正方体中,M是的中点,则点到平面MBD的距离是()A. B.C. D.8.将一枚骰子连续抛两次,得到正面朝上的点数分别为、,记事件A为“为偶数”,事件B为“”,则的值为()A. B.C. D.9.直线的倾斜角大小为()A. B.C. D.10.在公比为的等比数列中,前项和,则()A.1 B.2C.3 D.411.命题,,则为()A., B.,C., D.,12.函数的定义域为,其导函数的图像如图所示,则函数极值点的个数为()A.2 B.3C.4 D.5二、填空题:本题共4小题,每小题5分,共20分。13.已知几何体如图所示,其中四边形ABCD,CDGF,ADGE均为正方形,且边长为1,点M在DG上,若直线MB与平面BEF所成的角为45°,则___________.14.设,则曲线在点处的切线的倾斜角是_______15.已知定点,点在直线上运动,则,两点的最短距离为________16.已知平面的法向量为,平面的法向量为,若,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)解答下列两个小题:(1)双曲线:离心率为,且点在双曲线上,求的方程;(2)双曲线实轴长为2,且双曲线与椭圆的焦点相同,求双曲线的标准方程18.(12分)已知函数.(1)求的单调递减区间;(2)在锐角中,,,分别为角,,的对边,且满足,求的取值范围.19.(12分)已知数列的前n项和,递增等比数列满足,且.(1)求数列,的通项公式;(2)求数列的前n项和为.20.(12分)函数(1)求在上的单调区间;(2)当时,不等式恒成立,求实数a的取值范围21.(12分)在平面直角坐标系中,已知椭圆的焦点为,且过点,椭圆的上、下顶点分别为,右顶点为,直线过点且垂直于轴(1)求椭圆的标准方程;(2)若点在椭圆上(且在第一象限),直线与交于点,直线与轴交于点,试问:是否为定值?若是,请求出定值;若不是,请说明理由22.(10分)已知公差大于零的等差数列的前项和为,且满足,,(1)求数列的通项公式;(2)若数列是等差数列,且,求非零常数;
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据导函数与原函数的关系可求解.【详解】对于A,在区间,,故A不正确;对于B,在区间,,故B不正确;对于C、D,由图可知在区间上单调递增,在区间上单调递减,且,所以为函数的极大值点,故C不正确,D正确.故选:D2、D【解析】双曲线离心率公式和a、b、c的关系即可求得m,从而得到双曲线的标准方程.【详解】∵双曲线,∴,又,∴,∵离心率为,∴,解得,∴双曲线方程.故选:D.3、A【解析】根据双曲线标准方程的性质,列出关于不等式,求解即可得到答案【详解】由双曲线的性质:,解的或,故选:A4、B【解析】根据抛物线和写出焦点坐标,利用题干中的坐标相等,解出,结合从而求出答案.【详解】抛物线的焦点为,双曲线的,,所以,所以双曲线的右焦点为:,由题意,,两边平方解得,,则双曲线的渐近线方程为:.故选:B.5、C【解析】利用余弦定理角化边整理可得.【详解】由余弦定理有,整理得,故一定是直角三角形.故选:C6、B【解析】可将原命题变成全称命题形式,而全称命题的否定为特称命题,即可选出答案.【详解】命题“对任何实数,都有”,可写成:,使得,此命题为全称命题,故其否定形式为:,使得.故选:B.7、A【解析】等体积法求解点到平面的距离.【详解】连接,,则,,由勾股定理得:,,取BD中点E,连接ME,由三线合一得:ME⊥BD,则,故,设到平面MBD的距离是,则,解得:,故点到平面MBD的距离是.故选:A8、B【解析】利用条件概率的公式求解即可.【详解】根据题意可知,若事件为“为偶数”发生,则、两个数均为奇数或均为偶数,其中基本事件数为,,,,,,,,,,,,,,,,,,一共个基本事件,∴,而A、同时发生,基本事件有当一共有9个基本事件,∴,则在事件A发生的情况下,发生的概率为,故选:9、B【解析】将直线方程变为斜截式,根据斜率与倾斜角关系可直接求解.【详解】由直线可得,所以,设倾斜角为,则因为所以故选:B10、C【解析】先利用和的关系求出和,再求其公比.【详解】由,得,,所以,,则.故选:C.11、B【解析】直接利用特称命题的否定是全称命题写出结果即可.【详解】命题,为特称命题,而特称命题的否定是全称命题,所以命题,,则为:,.故选:B12、C【解析】根据给定的导函数的图象,结合函数的极值的定义,即可求解.【详解】如图所示,设导函数的图象与轴的交点分别为,根据函数的极值的定义可知在该点处的左右两侧的导数符号相反,可得为函数的极大值点,为函数的极小值点,所以函数极值点的个数为4个.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】把该几何体补成一个正方体,如图,利用正方体的性质证明面面垂直得出直线MB与平面BEF所成的角,然后计算可得【详解】把该几何体补成一个正方体,如图,,连接,由平面,平面,得,同理,又正方形中,,,平面,所以平面,而平面,所以平面平面,所以平面内的直线在平面上的射影是,即是直线MB与平面BEF所成的角,,,,故答案为:14、【解析】利用导数的定义,化简整理,可得,根据导数的几何意义,即可求得答案.【详解】因为=,所以,则曲线在点处的切线斜率为,即,又所以所求切线的倾斜角为故答案为:15、【解析】线段最短,就是说的距离最小,此时直线和直线垂直,可先求的斜率,再求直线的方程,然后与直线联立求交点即可【详解】定点,点在直线上运动,当线段最短时,就是直线和直线垂直,的方程为:,它与联立解得,所以的坐标是,所以,故答案为:16、2【解析】由,可两平面的法向量也平行,从而可求出,进而可求得答案【详解】因为平面的法向量为,平面的法向量为,,所以∥,所以存实数使,所以,所以,解得,所以,故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由可得,再将点代入方程,联立解出答案,可得答案.(2)先求出椭圆的焦点,则双曲线的焦点在轴上,由条件可得,且,从而得出答案.详解】(1)由,得,即,又,即,双曲线的方程即为,点坐标代入得,解得所以,双曲线的方程为(2)椭圆的焦点为,设双曲线的方程为,所以,且,所以,所以,双曲线的方程为18、(1)(2)【解析】(1)根据降幂公式化简的解析式,再用整体代入法即可求出函数的单调递减区间;(2)由正弦定理边化角,从而可求得,根据锐角三角形可得从而可求出答案【详解】解:(1),由得所以的单调递减区间为;(2)由正弦定理得,∵∴,即,,得,或,解得,或(舍),∵为锐角三角形,∴解得∴∴的取值范围为【点睛】本题主要考查三角函数的化简与性质,考查正弦定理的作用,属于基础题19、(1),(2)【解析】(1)先求,再由求出,设等比数列的公比为q,由条件可得,解出结合条件可得答案.(2)由(1)可得,利用错位相减法可求【小问1详解】,当时,,也满足上式,∴,则.设等比数列的公比为q,由得,解得或.因为是递增等比数列,所以,.【小问2详解】①①①②:∴20、(1)单调递增区间为;单调递减区间为和(2)【解析】(1)求出,然后可得答案;(2)由条件可得,设,则,然后利用导数可得在上单调递增,,然后分、两种情况讨论求解即可.【小问1详解】由题可得令,得;令,得,所以f(x)的单调递增区间为;单调递减区间为和【小问2详解】由,得,即设,则设,则当时,,,所以所以即在上单调递增,则若,则,所以h(x)在上单调递增所以h(x)≥h(0)=0恒成立,符合题意若a>2,则,必存在正实数,满足:当时,,h(x)单调递减,此时h(x)<h(0)=0,不符合题意综上所述,a的取值范围是21、(1)(2)为定值,该定值为2【解析】(1)先根据焦点形式设出椭圆方程和焦距,根据椭圆经过和半焦距为3易得椭圆的标准方程;(2)设,分别表示出直线方程,进而求得点的纵坐标,点横坐标,即可表示出,即可求得答案【小问1详解】由焦点坐标可知,椭圆的焦点在轴上,所以设椭圆:,焦距为,因为椭圆经过点,焦点为所以,,解得,所以椭圆的标准方程为;【小问2详解】设,由椭圆的方程可知,因为,则直线,由已知得,直线斜率均存在,则直线,令得,直线,令得,因为点在第一象限
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农产品购买合同的付款条款
- 标准合同挂名股东权益分配条款
- 批发商水泥购销合同
- 外卖平台订餐合同范本
- 皮鞋购销合同签订主体
- 先进维护技术服务合同
- 光纤采购招标合同解读
- 沥青购销合同
- 魔术演出安全保障服务合同
- 茶苗进出口购销合同
- 现代学徒制课题:数字化时代中国特色学徒制创新发展路径研究(附:研究思路模板、可修改技术路线图)
- 广东省汕头市潮阳区2023-2024学年高二上学期期末考试 地理 含答案
- 中考语文真题专题复习 小说阅读(第01期)(解析版)
- 钢制内浮盘施工方案
- 国家电网招聘之财务会计类题库有答案
- 机械工程测试技术知到智慧树章节测试课后答案2024年秋安徽理工大学
- GB 45067-2024特种设备重大事故隐患判定准则
- 职业本科《大学英语》课程标准
- 2024年广东省高中学业水平合格性考试语文试卷真题(含答案解析)
- 东亚研究智慧树知到期末考试答案章节答案2024年广东外语外贸大学
- DB11T 489-2024 建筑基坑支护技术规程
评论
0/150
提交评论