版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市第一五〇中学2023年高二数学第一学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设双曲线与幂函数的图象相交于,且过双曲线的左焦点的直线与函数的图象相切于,则双曲线的离心率为()A. B.C. D.2.双曲线的渐近线方程和离心率分别是A. B.C. D.3.如图已知正方体,点是对角线上的一点且,,则()A.当时,平面 B.当时,平面C.当为直角三角形时, D.当的面积最小时,4.已知数列的通项公式为,其前项和为,则满足的的最小值为()A.30 B.31C.32 D.335.若数列满足,则()A.2 B.6C.12 D.206.设为实数,则曲线:不可能是()A.抛物线 B.双曲线C.圆 D.椭圆7.已知等比数列中,,,则公比()A. B.C. D.8.“圆”是中国文化的一个重要精神元素,在中式建筑中有着广泛的运用,最具代表性的便是园林中的门洞.如图,某园林中的圆弧形挪动高为2.5m,底面宽为1m,则该门洞的半径为()A.1.2m B.1.3mC.1.4m D.1.5m9.已知,为双曲线:的焦点,为,(其中为双曲线半焦距),与双曲线的交点,且有,则该双曲线的离心率为()A. B.C. D.10.某家大型超市近10天的日客流量(单位:千人次)分别为:2.5、2.8、4.4、3.6.下列图形中不利于描述这些数据的是()A.散点图 B.条形图C.茎叶图 D.扇形图11.已知等比数列的前项和为,若,,则()A.20 B.30C.40 D.5012.如图,正四棱柱是由四个棱长为1的小正方体组成的,是它的一条侧棱,是它的上底面上其余的八个点,则集合的元素个数()A.1 B.2C.4 D.8二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,在直二面角D-AB-E中,四边形ABCD是边长为2的正方形,△AEB是等腰直角三角形,其中,则点D到平面ACE的距离为________14.直线的倾斜角为_______________.15.若,且数列是严格递增数列或严格递减数列,则实数a取值范围是______16.直线l过点P(1,3),且它的一个方向向量为(2,1),则直线l的一般式方程为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数(1)若,求的单调区间和极值;(2)在(1)的条件下,证明:若存在零点,则在区间上仅有一个零点;(3)若存在,使得,求的取值范围18.(12分)已知点,圆,点Q在圆上运动,的垂直平分线交于点P.(1)求动点P的轨迹的方程;(2)过点的动直线l交曲线C于A、B两点,在y轴上是否存在定点T,使以AB为直径的圆恒过这个点?若存在,求出点T的坐标,若不存在,请说明理由.19.(12分)在平面直角坐标系xOy中,点A(2,4),直线l:,设圆C的半径为1,圆心在直线l上,圆心也在直线上.(1)求圆C的方程;(2)过点A作圆C的切线,求切线的方程.20.(12分)如图,扇形AOB的半径为2,圆心角,点C为弧AB上一点,平面AOB且,点且,面MOC(1)求证:平面平面POB;(2)求平面POA与平面MOC所成二面角的正弦值的大小21.(12分)如图所示,在三棱柱中,平面,,,,点,分别在棱和棱上,且,,点为棱的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.22.(10分)奋发学习小组共有3名学生,在某次探究活动中,他们每人上交了1份作业,现各自从这3份作业中随机地取出了一份作业.(1)每个学生恰好取到自己作业的概率是多少?(2)每个学生不都取到自己作业的概率是多少?(3)每个学生取到的都不是自己作业的概率是多少?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设直线方程为,联立,利用判别式可得,进而可求,再结合双曲线的定义可求,即得.【详解】可设直线方程为,联立,得,由题意得,∴,,∴,即,由双曲线定义得,.故选:B.2、A【解析】先根据双曲线的标准方程,求得其特征参数的值,再利用双曲线渐近线方程公式和离心率定义分别计算即可.【详解】双曲线的,双曲线的渐近线方程为,离心率为,故选A.【点睛】本题主要考查双曲线的渐近线及离心率,属于简单题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解3、D【解析】建立空间直角坐标系,利用空间向量法一一计算可得;【详解】解:由题可知,如图令正方体的棱长为1,建立空间直角坐标系,则,,,,,,,所以,因为,所以,所以,,,,设平面的法向量为,则,令,则,,所以对于A:若平面,则,则,解得,故A错误;对于B:若平面,则,即,解得,故B错误;当为直角三角形时,有,即,解得或(舍去),故C错误;设到的距离为,则,当的面积最小时,,故正确故选:4、C【解析】由条件可得得出,再由解出的范围,得出答案.【详解】由,则由,即,即,所以所以满足的的最小值为为32故选:C5、D【解析】由已知条件变形可得,然后累乘法可得,即可求出详解】由得,,.故选:D6、A【解析】根据圆的方程、椭圆的方程、双曲线的方程和抛物线的方程特征即可判断.【详解】解:对A:因为曲线C的方程中都是二次项,所以根据抛物线标准方程的特征曲线C不可能是抛物线,故选项A正确;对B:当时,曲线C为双曲线,故选项B错误;对C:当时,曲线C为圆,故选项C错误;对D:当且时,曲线C为椭圆,故选项D错误;故选:A.7、C【解析】利用等比中项的性质可求得的值,再由可求得结果.【详解】由等比中项的性质可得,解得,又,,故选:C.8、B【解析】设半径为R,根据垂径定理可以列方程求解即可.【详解】设半径为R,,解得,化简得.故选:B.9、B【解析】根据求得的关系,结合双曲线的定义以及勾股定理,即可求得的等量关系,再求离心率即可.【详解】根据题意,连接,作图如下:显然为直角三角形,又,又点在双曲线上,故可得,解得,由勾股定理可得:,即,即,,故双曲线的离心率为.故选:B.10、A【解析】根据数据的特征以及各统计图表的特征分析即可;【详解】解:茎叶图、条形图、扇形图均能将数据描述出来,并且能够体现出数据的变化趋势;散点图表示因变量随自变量而变化的大致趋势,故用来描述该超市近10天的日客流量不是很合适;故选:A11、B【解析】根据等比数列前项和的性质进行求解即可.【详解】因为是等比数列,所以成等比数列,即成等比数列,显然,故选:B12、A【解析】用空间直角坐标系看正四棱柱,根据向量数量积进行计算即可.【详解】建立空间直角坐标系,为原点,正四棱柱的三个边的方向分别为轴、轴和看轴,如右图示,,设,则AB所以集合,元素个数为1.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立合适空间直角坐标系,分别表示出点的坐标,然后求解出平面的一个法向量,利用公式求解出点到平面的距离.【详解】以AB的中点O为坐标原点,分别以OE,OB所在的直线为x轴、y轴,过垂直于平面的方向为轴,建立如下图所示的空间直角坐标系,则,,设平面ACE的法向量,则,即,令,∴故点D到平面ACE的距离.故答案:.14、【解析】由直线的斜率为,得到,即可求解.【详解】由题意,可知直线的斜率为,设直线的倾斜角为,则,解得,即换线的倾斜角为.【点睛】本题主要考查直线的倾斜角的求解问题,其中解答中熟记直线的倾斜角与斜率的关系,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.15、【解析】根据数列递增和递减的定义求出实数a的取值范围.【详解】因为数列是严格递增数列或严格递减数列,所以.若数列是严格递增数列,则,即,即恒成立,故;若数列是严格递减数列,则,即,即恒成立,由,故;综上,实数a的取值范围是故答案为:16、【解析】根据直线方向向量求出直线斜率即可得直线方程.【详解】因为直线l的一个方向向量为(2,1),所以其斜率,所以l方程为:,即其一般式方程为:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)递减区间是,单调递增区间是,极小值(2)证明见解析(3)【解析】(1)对函数进行求导通分化简,求出解得,在列出与在区间上的表格,即可得到答案.(2)由(1)知,在区间上的最小值为,因为存在零点,所以,从而.在对进行分类讨论,再利用函数的单调性得出结论.(3)构造函数,在对进行求导,在对进行分情况讨论,即可得的得到答案.【小问1详解】函数的定义域为,,由解得与在区间上的情况如下:–↘↗所以,的单调递减区间是,单调递增区间是;在处取得极小值,无极大值【小问2详解】由(1)知,在区间上的最小值为因为存在零点,所以,从而当时,在区间上单调递减,且,所以是在区间上的唯一零点当时,在区间上单调递减,且,所以在区间上仅有一个零点综上可知,若存在零点,则在区间上仅有一个零点【小问3详解】设,①若,则,符合题意②若,则,故当时,,在上单调递增所以,存在,使得的充要条件为,解得③若,则,故当时,;当时,在上单调递减,在上单调递增所以,存在,使得的充要条件为,而,所以不合题意综上,的取值范围是【点睛】本题考查求函数的单调区间和极值、证明给定区间只有一个零点问题,以及含参存在问题,属于难题.18、(1);(2)存在,T(0,1)﹒【解析】(1)根据椭圆的定义,结合即可求P的轨迹方程;(2)假设存在T(0,t),设AB方程为,联立直线方程和椭圆方程,代入=0即可求出定点T.【小问1详解】由题可知,,则,由椭圆定义知P的轨迹是以F1、为焦点,且长轴长为的椭圆,∴,∴,∴P的轨迹方程为C:;【小问2详解】假设存在T(0,t)满足题意,易得AB的斜率一定存在,否则不会存在T满足题意,设直线AB的方程为,联立,化为,易知恒成立,∴(*)由题可知,将(*)代入可得:即∴,解,∴在y轴上存在定点T(0,1),使以AB为直径的圆恒过这个点T.19、(1)(2)或【解析】(1)直接求出圆心的坐标,写出圆的方程;(2)分斜率存在和斜率不存在进行分类讨论,利用几何法列方程,即可求解.【小问1详解】由圆心C在直线l:上可设:点,又C也在直线上,∴,∴又圆C的半径为1,∴圆C的方程为.【小问2详解】当直线垂直于x轴时,与圆C相切,此时直线方程为.当直线与x轴不垂直时,设过A点的切线方程为,即,则,解得.此时切线方程,.综上所述,所求切线为或20、(1)证明见解析(2)【解析】(1)连接,设与相交于点,连接MN,利用余弦定理可求得,,的长度,进而得到,又,由此可得平面,最后利用面面垂直的判定定理即可得证;(2)建立恰当空间直角坐标系,求出两个平面的法向量,然后利用向量法求解二面角的余弦值,从而即可得答案【小问1详解】证明:连接,设与相交于点,连接MN,平面,在平面内,平面平面,,,,在中,由余弦定理可得,,,又在中,,由余弦定理可得,,,故,又平面,在平面内,,又,平面,又平面,平面平面;【小问2详解】解:由(1)可知直线,,两两互相垂直,所以以点为坐标原点,建立如图所示的空间直角坐标系,则,所以,,设平面的一个法向量为,则,可取;设平面的一个法向量为,则,可取,,平面与平面所成二面角的正弦值为21、(1)证明见解析(2)【解析】(1)构建空间直角坐标系,由已知确定相关点坐标,进而求的方向向量、面的法向量,并应用坐标计算空间向量的数量积,即可证结论.(2)求的方向向量,结合(1)中面的法向量,应用空间向量夹角的坐标表示求直线与平面所成角的正弦值.【小问1详解】以为原点,以,,为轴、轴、轴的正方向建立空间直角坐标系,如图所示,可得:,,,,,,,.∴,,,设为面的法向量,则,令得,∴,即,∴平面;【小问2详解】由(1)知:,为面的一个法向量,设与平面所成角为,则,∴直线与平面所成角的正弦值为.22、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省精诚联盟2024-2025学年高三上学期12月适应性联考 信息技术试卷(含答案解析)
- 2025年高二化学选择性必修2(人教版)同步课件 章末检测试卷(三)
- 2025年春初中化学九年级下册(科粤版)上课课件 8.3 酸和碱反应
- 天津市河东区天津市第一0二中学2024-2025学年九年级上学期12月月考物理试题(无答案)
- 《增员话术小故事》课件
- 上市公司信息披露规范与案例分析1
- 3可调谐窄带辐亮度源校准规范不确定度分析示例
- 高一年级 统编版 语文 第三单元《《登高》第二课时》课件
- 高一 统编版 语文 第四单元《社会调查报告写作指导》课件
- 河北省保定市涿州市2023-2024学年三年级上学期语文期末试卷
- FET集团师带徒管理办法
- 江苏省徐州市2024-2025学年高二语文上学期期中试卷含解析
- 电梯安全总监和安全员的任命文件
- NB-T35064-2015水电工程安全鉴定规程
- 大力弘扬教育家精神造就高素质教师队伍
- 社区养老食堂运营方案策划书
- 《实验活动1 配制一定物质的量浓度的溶液》课件
- DL5009.2-2013电力建设安全工作规程第2部分:电力线路
- 新修订《纪律处分条例》学习考试题库200题(含单选、多选、判断题)
- 2024年中考考前语文集训试卷17及参考答案(含答题卡)A3版
- 抗生素使用分析报告
评论
0/150
提交评论