江苏省连云港市灌云县2023年数学高二上期末学业质量监测试题含解析_第1页
江苏省连云港市灌云县2023年数学高二上期末学业质量监测试题含解析_第2页
江苏省连云港市灌云县2023年数学高二上期末学业质量监测试题含解析_第3页
江苏省连云港市灌云县2023年数学高二上期末学业质量监测试题含解析_第4页
江苏省连云港市灌云县2023年数学高二上期末学业质量监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省连云港市灌云县2023年数学高二上期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆,直线,直线l被圆O截得的弦长最短为()A. B.C.8 D.92.如图,空间四边形中,,,,且,,则()A. B.C. D.3.已知双曲线的虚轴长是实轴长的2倍,则实数的值是A. B.C. D.4.已知数列为等比数列,则“,”是“为递减数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.椭圆与(0<k<9)的()A.长轴的长相等B.短轴的长相等C.离心率相等D.焦距相等6.数列满足,,则()A. B.C. D.27.执行如图所示的程序框图,如果输入,那么输出的a值为()A.3 B.27C.-9 D.98.已知数列满足,,数列的前n项和为,若,,成等差数列,则n=()A.6 B.8C.16 D.229.已知双曲线:的左、右焦点分别为,,且,点是的右支上一点,且,,则双曲线的方程为()A. B.C. D.10.已知,,若不等式恒成立,则正数的最小值是()A.2 B.4C.6 D.811.“”是“函数在上无极值”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.古希腊数学家阿波罗尼奥斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数k(k>0且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知O(0,0),A(3,0),动点P(x,y)满,则动点P轨迹与圆的位置关系是()A.相交 B.相离C.内切 D.外切二、填空题:本题共4小题,每小题5分,共20分。13.已知曲线的焦距是10,曲线上的点到一个焦点的距离是2,则点到另一个焦点的距离为__________.14.若点P为双曲线上任意一点,则P满足性质:点P到右焦点的距离与它到直线的距离之比为离心率e,若C的右支上存在点Q,使得Q到左焦点的距离等于它到直线的距离的6倍,则双曲线的离心率的取值范围是______15.设双曲线C:的焦点为,点为上一点,,则为_____.16.已知O为坐标原点,椭圆T:,过椭圆上一点P的两条直线PA,PB分别与椭圆交于A,B,设PA,PB的中点分别为D,E,直线PA,PB的斜率分别是,,若直线OD,OE的斜率之和为2,则的最大值为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,斜率为的动直线与椭圆交于A,B两点,且直线与圆相切.(1)若,求直线的方程;(2)求三角形的面积的取值范围.18.(12分)已知函数的图象在处的切线方程为.(1)求的解析式;(2)若关于的方程在上有解,求的取值范围.19.(12分)如图,在几何体ABCEFG中,四边形ACGE为平行四边形,为等边三角形,四边形BCGF为梯形,H为线段BF的中点,,,,,,.(1)求证:平面平面BCGF;(2)求平面ABC与平面ACH夹角的余弦值.20.(12分)如图,抛物线的顶点在原点,圆的圆心恰是抛物线的焦点.(1)求抛物线的方程;(2)一条直线的斜率等于2,且过抛物线焦点,它依次截抛物线和圆于、、、四点,求的值.21.(12分)已知为数列的前n项和,,且,,其中为常数.(1)求证:数列为等差数列;(2)是否存在,使得是等差数列?并说明理由.22.(10分)已知函数.(1)若,求函数在处的切线方程;(2)讨论函数在上的单调性.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先求得直线过定点,再根据当点与圆心连线垂直于直线l时,被圆O截得的弦长最短求解.【详解】因为直线方程,即为,所以直线过定点,因为点在圆的内部,当点与圆心连线垂直于直线l时,被圆O截得的弦长最短,点与圆心(0,0)的距离为,此时,最短弦长为,故选:B2、C【解析】根据空间向量的线性运算即可求解.【详解】因为,又因为,,所以.故选:C3、C【解析】由方程表示双曲线知,又双曲线的虚轴长是实轴长的2倍,所以,即,所以故选C.考点:双曲线的标准方程与简单几何性质.4、A【解析】本题可依次判断“,”是否是“为递减数列”的充分条件以及必要条件,即可得出结果.【详解】若等比数列满足、,则数列为递减数列,故“,”是“为递减数列”的充分条件,因为若等比数列满足、,则数列也是递减数列,所以“,”不是“为递减数列”的必要条件,综上所述,“,”是“为递减数列”的充分不必要条件,故选:A.【点睛】本题考查充分条件以及必要条件的判定,考查等比数列以及递减数列的相关性质,体现了基础性和综合性,考查推理能力,是简单题.5、D【解析】根据椭圆方程求得两个椭圆的,由此确定正确选项.【详解】椭圆与(0<k<9)的焦点分别在x轴和y轴上,前者a2=25,b2=9,则c2=16,后者a2=25-k,b2=9-k,则显然只有D正确故选:D6、C【解析】根据已知分析数列周期性,可得答案【详解】解:∵数列满足,,∴,,,,故数列以4为周期呈现周期性变化,由,故,故选C【点睛】本题考查的知识点是数列的递推公式,数列的周期性,难度中档7、B【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环累乘值,并判断满足时输出的值【详解】解:模拟执行程序框图,可得,时,不满足条件,;不满足条件,;不满足条件,;满足条件,退出循环,输出的值为27故选:8、D【解析】利用累加法求得列的通项公式,再利用裂项相消法求得数列的前n项和为,再根据,,成等差数列,得,从而可得出答案.【详解】解:因为,且,所以当时,,因为也满足,所以.因为,所以.若,,成等差数列,则,即,得.故选:D.9、B【解析】画出图形,利用已知条件转化求解,关系,利用,解得,即可得到双曲线的方程【详解】由题意双曲线的图形如图,连接与轴交于点,设,,因为,所以,因为,所以,则,因为点是的右支上一点,所以,所以,则,因为,所以,,由勾股定理可得:,即,解得,则,所以双曲线的方程为:故选:B10、B【解析】由基本不等式求出的最小值,只需最小值大于等于18,得到关于的不等式,求解,即可得出结论.【详解】,因为不等式恒成立,所以,即,解得,所以.故选:B.【点睛】本题考查基本不等式的应用,考查一元二次不等式的解法,属于基础题.11、B【解析】根据极值的概念,可知函数在上无极值,则方程的,再根据充分、必要条件判断,即可得到结果.【详解】由题意,可得,若函数在上无极值,所以对于方程,,解得.所以“”是“函数在上无极值”的必要不充分条件.故选:B.12、A【解析】首先求得点的轨迹,再利用圆心距与半径的关系,即可判断两圆的位置关系.【详解】由条件可知,,化简为:,动点的轨迹是以为圆心,2为半径的圆,圆是以为圆心,为半径的圆,两圆圆心间的距离,所以两圆相交.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、或10.【解析】对参数a进行讨论,考虑曲线是椭圆和双曲线的情况,进而结合椭圆与双曲线的定义和性质求得答案.【详解】由题意,曲线的半焦距为5,若曲线是焦点在x轴上的椭圆,则a>16,所以,而椭圆上的点到一个焦点距离是2,则点到另一个焦点的距离为;若曲线是焦点在y轴上的椭圆,则0<a<16,所以,舍去;若曲线是双曲线,则a<0,容易判断双曲线的焦点在y轴,所以,不妨设点P在双曲线的上半支,上下焦点分别为,因为实半轴长为4,容易判断点P到下焦点的距离的最小值为4+5=9>2,不合题意,所以点P到上焦点的距离为2,则它到下焦点的距离.故答案为:或10.14、【解析】若Q到的距离为有,由题设有,结合双曲线离心率的性质,即可求离心率的范围.【详解】由题意,,即,整理有,所以或,若Q到的距离为,则Q到左、右焦点的距离分别为、,又Q在C的右支上,所以,则,又,综上,双曲线的离心率的取值范围是.故答案为:【点睛】关键点点睛:若Q到的距离为,根据给定性质有Q到左、右焦点的距离分别为、,再由双曲线性质及已知条件列不等式组求离心率范围.15、14【解析】利用双曲线的定义求解即可【详解】由,得,则,因为点为上一点,所以,因为,所以,解得或(舍去),故答案为:1416、【解析】设的坐标,用点差法求和与的关系同,与的关系,然后表示出,求得最大值【详解】设,,,则,两式相减得,∴,,则,同理,,又,∴,,当且仅当,即时等号成立,∴,故答案为:【点睛】方法点睛:本题考查直线与椭圆相交问题,考查椭圆弦中点问题.椭圆中涉及到弦的中点时,常常用点差法确定关系,即设弦端点为,弦中点为,把两点坐标代入椭圆方程,相减后可得三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)设直线,利用圆心到直线的距离等于半径,即可得到方程,求出,即可得解;(2)设,,,利用圆心到直线的距离等于半径,得到,再联立直线与椭圆方程,消元列出韦达定理,利用弦长公式表示出,再根据及基本不等式求出,最后再计算直线斜率不存在时三角形的面积,即可得解;【小问1详解】解:圆,圆心为,半径;设直线,即,则,解得,所以或;【小问2详解】解:因为直线的斜率存在,设,,,即,则,所以,即,联立,消元整理得,所以,,所以所以因为,所以,当且仅当,即时取等号,所以,当轴时,取,,则,此时,所以;18、(1)(2)【解析】(1)求,由条件可得,得出关于的方程组,求解可得;(2)令,注意,所以在具有单调性时,则方程无解,求,对分类讨论,求出单调区间,结合函数值的变化趋势,即可求得结论.【详解】解:(1),因为,所以,解得,,所以.(2)令,则.令,则在上单调递增.当,即时,,所以单调递增,又,所以;当,即时,则存在,使得,所以函数在上单调递减,在上单调递增,又,则.当时,,所以在上有解.综上,的取值范围为.【点睛】本题考查导数的几何意义求参数,考查导数的综合应用,涉及到单调区间、函数零点的问题,考查分类讨论思想,属于较难题.19、(1)证明见解析(2)【解析】(1)在中,由正弦定理知可知,利用三角形内角和可知即,又因为,再根据面面垂直的判定定理,即可证明结果;(2)取BC中点O,由(1)得:平面BCGF,,以O为原点,OB,OH,OA所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,利用空间向量求二面角,即可求出结果.【小问1详解】证明:(1)在中,由正弦定理知:解得因为,所以又因为,所以所以又因为,所以直线平面ABC又因为平面BCGF所以平面平面BCGF【小问2详解】解:取BC中点O,连结OA,OH,由(1)得:平面BCGF,则以O为原点,OB,OH,OA所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系在中,则,,平面ABC的一个法向量为设平面ACH的一个法向量为因为,所以,取,则设平面APD与平面PDF夹角为,所以.20、(1)圆的圆心坐标为,即抛物线的焦点为,……3分∴∴抛物线方程为……6分

由题意知直线AD的方程为…7分即代入得=0设,则,……11分∴【解析】(1)设抛物线方程为,由题意求出其焦点坐标,进而可求出结果;(2)先由题意得出直线的方程,联立直线与抛物线方程,求出,再由为圆的直径,即可求出结果.【详解】(1)设抛物线方程为,圆的圆心恰是抛物线的焦点,∴.抛物线方程为:;(2)依题意直线的方程为设,,则,得,,.【点睛】本题主要考查抛物线的方程,以及直线与抛物线的位置关系;由抛物线的焦点坐标可直接求出抛物线的方程;联立直线与抛物线方程,结合韦达定理和抛物线定义可求出弦长,进而可求出结果,属于常考题型.21、(1)详见解析;(2)存在时是等差数列,详见解析.【解析】(1)利用与的关系可得,再结合条件即证;(2)由题可得,,若是等差数列,可得,进而可求数列的通项公式,即证.【小问1详解】∵,∴,∴,又,∴,∴,∴数列为等差数列;【小问2详解】∵,,∴,又,∴,若是等差数列,则,即,解得,当时,由,∴数列的奇数项构成的数列为首项为1,公差为2的等差数列,∴,即,为奇数,∴数列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论