版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省白城市2023年数学高二上期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,若输出的,则输入的可能为()A.9 B.5C.4 D.32.若两个不同平面,的法向量分别为,,则()A.,相交但不垂直 B.C. D.以上均不正确3.如图,在棱长为的正方体中,为线段的中点,为线段的中点,则直线到直线的距离为()A. B.C. D.4.下列说法正确的个数有()个①在中,若,则②是,,成等比数列的充要条件③直线是双曲线的一条渐近线④函数的导函数是,若,则是函数的极值点A.0 B.1C.2 D.35.在中,角A,B,C的对边分别为a,b,c,若,且,则为()A.等腰三角形 B.直角三角形C.锐角三角形 D.钝角三角形6.等比数列的各项均为正数,且,则A. B.C. D.7.若抛物线的焦点为,则其标准方程为()A. B.C. D.8.已知命题:,;命题:在中,若,则,则下列命题为真命题的是()A. B.C. D.9.在单调递减的等比数列中,若,,则()A.9 B.3C. D.10.“直线的斜率不大于0”是“直线的倾斜角为钝角”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.数列,则是这个数列的第()A.项 B.项C.项 D.项12.曲线上的点到直线的距离的最小值是()A.3 B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知曲线,①若,则是椭圆,其焦点在轴上;②若,则是圆,其半径为;③若,则是双曲线,其渐近线方程为;④若,,则是两条直线.以上四个命题,其中正确的序号为_________.14.若椭圆和圆(c为椭圆的半焦距)有四个不同的交点,则椭圆的离心率的取值范围是_____.15.直线与直线间的距离为___________.16.圆与x轴相切于点A.点B在圆C上运动,则AB的中点M的轨迹方程为______(当点B运动到与A重合时,规定点M与点A重合);点N是直线上一点,则的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆与椭圆的焦点相同,且椭圆C过点(1)求椭圆C的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点A,B,且(O为坐标原点),若存在,求出该圆的方程;若不存在,说明理由18.(12分)已知椭圆的中心在原点,对称轴为坐标轴且焦点在轴上,抛物线:,若抛物线的焦点在椭圆上,且椭圆的离心率为.(1)求椭圆的方程;(2)已知斜率存在且不为零的直线满足:与椭圆相交于不同两点、,与直线相交于点.若椭圆上一动点满足:,,且存在点,使得恒为定值,求的值.19.(12分)设{an}是公比为正数的等比数列a1=2,a3=a2+4(Ⅰ)求{an}的通项公式;(Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn20.(12分)已知双曲线的一条渐近线方程为,且双曲线C过点.(1)求双曲线C的标准方程;(2)过点M的直线与双曲线C的左右支分别交于A、B两点,是否存在直线AB,使得成立,若存在,求出直线AB的方程;若不存在,请说明理由.21.(12分)如图,在三棱柱中,点在底面内的射影恰好是点,是的中点,且满足(1)求证:平面;(2)已知,直线与底面所成角的大小为,求二面角的大小22.(10分)一个小岛的周围有环岛暗礁,暗礁分布在以小岛中心为圆心,半径为的圆形区域内(圆形区域的边界上无暗礁),已知小岛中心位于轮船正西处,港口位于小岛中心正北处.(1)若,轮船直线返港,没有触礁危险,求的取值范围?(2)若轮船直线返港,且必须经过小岛中心东北方向处补水,求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据输出结果可得输出时,结合执行逻辑确定输入k的可能值,即可知答案.【详解】由,得,则输人的可能为.∴结合选项知:D符合要求.故选:D.2、B【解析】由向量数量积为0可求.【详解】∵,,∴,∴,∴,故选:B.3、C【解析】连接,,,,在平面中,作,为垂足,将两平行线的距离转化成点到直线的距离,结合余弦定理即同角三角函数基本关系,求得,因此可得,进而可得直线到直线的距离;【详解】解:如图,连接,,,,在平面中,作,为垂足,因为,分别为,的中点,因为,,所以,所以,同理,所以四边形是平行四边形,所以,所以即为直线到直线的距离,在三角形中,由余弦定理得因为,所以是锐角,所以,在直角三角形中,,故直线到直线的距离为;故选:C4、B【解析】根据三角函数、等比数列、双曲线和导数知识逐项分析即可求解.【详解】①在中,则有,因,所以,又余弦函数在上单调递减,所以,故①正确,②当且时,此时,但是,,不成等比数列,故②错误,③由双曲线可得双曲线的渐近线为,故③错误,④“”是“是函数的极值点”的必要不充分条件,故④错误.故选:B.5、B【解析】由余弦定理可得,再利用可得答案.【详解】因为,所以,由余弦定理,因为,所以,又,∴,故为直角三角形.故选:B.6、B【解析】根据等比数列的性质,结合已知条件,求得,进而求得的值.【详解】由于数列是等比数列,故,所以,故.故选B.【点睛】本小题主要考查等比数列的性质,考查对数运算,属于基础题.7、D【解析】由题意设出抛物线的标准方程,再利用焦点为建立,解方程即可.【详解】由题意,设抛物线标准方程为,所以,解得,所以抛物线标准方程为.故选:D8、C【解析】分别求得的真假性,从而确定正确答案.【详解】对于,由于,所以为假命题,为真命题.对于,在三角形中,,由正弦定理得,所以为真命题,为假命题.所以为真命题,、、为假命题.故选:C9、A【解析】利用等比数列的通项公式可得,结合条件即求.【详解】设等比数列的公比为,则由,,得,解得或,又单调递减,故,.故选:A.10、B【解析】直线倾斜角的范围是[0°,180°),直线斜率为倾斜角(不为90°)的正切值,据此即可判断求解.【详解】直线的斜率不大于0,则直线l斜率可能等于零,此时直线倾斜角为0°,不为钝角,故“直线的斜率不大于0”不是“直线的倾斜角为钝角”充分条件;直线的倾斜角为钝角时,直线的斜率为负,满足直线的斜率不大于0,即“直线的倾斜角为钝角”是“直线的斜率不大于0”的充分条件,“直线的斜率不大于0”是“直线的倾斜角为钝角”的必要条件;综上,“直线的斜率不大于0”是“直线的倾斜角为钝角”的必要不充分条件.故选:B.11、A【解析】根据数列的规律,求出通项公式,进而求出是这个数列的第几项【详解】数列为,故通项公式为,是这个数列的第项.故选:A.12、D【解析】求出函数的导函数,设切点为,依题意即过切点的切线恰好与直线平行,此时切点到直线的距离最小,求出切点坐标,再利用点到直线的距离公式计算可得;【详解】解:因为,所以,设切点为,则,解得,所以切点为,点到直线的距离,所以曲线上的点到直线的距离的最小值是;故选:D二、填空题:本题共4小题,每小题5分,共20分。13、①③④【解析】通过m,n的取值判断焦点坐标所在轴,判断①,求出圆的半径判断②;通过求解双曲线的渐近线方程,判断③;利用,,判断曲线是否是两条直线判断④【详解】解:①若,则,因为方程化为:,焦点坐标在y轴,所以①正确;②若,则C是圆,其半径为:,不一定是,所以②不正确;③若,则C是双曲线,其渐近线方程为,化简可得,所以③正确;④若,,方程化为,则C是两条直线,所以④正确;故答案为:①③④14、【解析】当圆的直径介于椭圆长轴和短轴长度范围之间时,椭圆和圆有四个不同的焦点,由此列不等式,解不等式求得椭圆离心率的取值范围.【详解】由于椭圆和圆有四个焦点,故圆的直径介于椭圆长轴和短轴长度范围之间,即.由得,两边平方并化简得,即①.由得,两边平方并化简得,解得②.由①②得.故填.【点睛】本小题主要考查椭圆和圆的位置关系,考查椭圆离心率取值范围的求法,属于中档题.15、【解析】利用平行间的距离公式可求得结果.【详解】由平行线间的距离公式可知,直线、间的距离为.故答案为:.16、①.②.【解析】将点M的轨迹转化为以AC为直径的圆,再确定圆心及半径即可求解,将的最小值转化为点到圆心的距离再减去半径可求解.【详解】依题意得,,因为M为AB中点,所以,所以点M的轨迹是以AC为直径的圆,又AC中点为,,所以点M的轨迹方程为,圆心,设关于直线的对称点为,则有,解得,所以,所以由对称性可知的最小值为故答案为:,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,.【解析】(1)与焦点相同可求出c,将代入方程结合a、b、c关系即可求a和b;(2)直线AB斜率存在时,设直线AB的方程为,联立AB方程与椭圆方程,得到根与系数的关系;由得,结合韦达定理得k与m的关系;再由圆与直线相切,即可求其半径;最后再验证AB斜率不存在时的情况即可.【小问1详解】,由题可知,解得点,所以椭圆的方程为;【小问2详解】设,设,代入,整理得,由得,即,由韦达定理化简得,即,设存在圆与直线相切,则,解得,所以圆的方程为,又若轴时,检验知满足条件,故存在圆心在原点的圆符合题意18、(1)(2)【解析】(1)先求得椭圆的,代入公式即可求得椭圆的方程;(2)以设而不求的方法得到两根和,再由条件,得到四边形为平行四边形,并以向量方式进行等价转化,再与恒为定值进行联系,即可求得的值.【小问1详解】由条件可设椭圆:,因为抛物线:的焦点为,所以,解得因为椭圆离心率为,所以,则,故椭圆的方程为【小问2详解】设直线:,,,把直线的方程代入椭圆的方程,可得,所以,因为,,所以四边形为平行四边形,得,即,得由在椭圆上可得,,即因为,又所以,所以将代入得,所以,即.【点睛】数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。19、(Ⅰ)an=2×2n﹣1=2n(Ⅱ)2n﹣12n+1﹣2+n2=2n+1+n2﹣2【解析】(Ⅰ)由{an}是公比为正数的等比数列,设其公比,然后利用a1=2,a3=a2+4可求得q,即可求得{an}的通项公式(Ⅱ)由{bn}是首项为1,公差为2的等差数列可求得bn=1+(n﹣1)×2=2n﹣1,然后利用等比数列与等差数列的前n项和公式即可求得数列{an+bn}的前n项和Sn解:(Ⅰ)∵设{an}是公比为正数的等比数列∴设其公比为q,q>0∵a3=a2+4,a1=2∴2×q2="2×q+4"解得q=2或q=﹣1∵q>0∴q="2"∴{an}的通项公式为an=2×2n﹣1=2n(Ⅱ)∵{bn}是首项为1,公差为2的等差数列∴bn=1+(n﹣1)×2=2n﹣1∴数列{an+bn}的前n项和Sn=+=2n+1﹣2+n2=2n+1+n2﹣2点评:本题考查了等比数列的通项公式及数列的求和,注意题目条件的应用.在用等比数列的前n项和公式时注意辨析q是否为1,只要简单数字运算时不出错,问题可解,是个基础题20、(1);(2)存在,直线AB的方程为:或.【解析】(1)根据给定的渐近线方程及所过的点列式计算作答.(2)假定存在符合条件的直线AB,设出其方程,借助弦长公式计算判断作答.【小问1详解】依题意,,解得:,所以双曲线C的标准方程是.【小问2详解】假定存在直线AB,使得成立,显然不垂直于y轴,否则,设直线:,由消去x并整理得:,因直线与双曲线C的左右支分别交于A、B两点,设,于是得,则有,即或,因此,,解得,所以存在直线AB,使得成立,此时,直线AB的方程为:或.21、(1)证明见解析;(2).【解析】(1)分别证明出和,利用线面垂直的判定定理即可证明;(2)以C为原点,为x、y、z轴正方向建立空间直角坐标系,用向量法求二面角的平面角.【小问1详解】因为点在底面内的射影恰好是点,所以面.因为面,所以.因为是的中点,且满足.所以,所以.因为,所以,即,所以.因为,面,面,所以平面.【小问2详解】∵面,∴直线与底面所成角为,即.因为,所以由(1)知,,因,所以,.如图示,以C为原点,为x、y、z轴正方向建立空间直角坐标系.则,,,,所以,设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商丘学院《行政管理》2023-2024学年第一学期期末试卷
- 2024年碎石加工产品回收与再利用合同
- 货柜安装合同范例
- 商洛职业技术学院《艺术设计字体设计应用》2023-2024学年第一学期期末试卷
- 家具 加盟合同范例
- 精-品解析:广东省深圳实验学校高中部2023-2024学年高一上学期第三阶段考试数学试题(原卷版)
- 美牙合同范例大
- 陕西邮电职业技术学院《房屋建筑学(一)》2023-2024学年第一学期期末试卷
- 2024至2030年家用按摩椅项目投资价值分析报告
- 2024至2030年电动葫芦变频器项目投资价值分析报告
- 国家开放大学电大《现代汉语专题》形考作业答案
- 审核问题的分类和归类
- 商贸流通培训课件
- 开放系统10862《人文英语(4)》期末机考真题及答案(第105套)
- 独立基础计算(带公式)
- 人教部编版六年级语文上册小古文阅读专项训练含答案
- 防护用品的使用和维护安全培训课件
- 茶叶店食品安全管理元培训内容
- 人工智能算力中心
- 电路理论:星形联接与三角形联接的电阻的等效变换
- 2023四川省安全员A证考试题库附答案
评论
0/150
提交评论