版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
海南省文昌侨中2023-2024学年高二上数学期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数,的值域为()A. B.C. D.2.已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,角终边上有一点,为锐角,且,则()A. B.C. D.3.接种疫苗是预防控制新冠疫情最有效的方法,我国自2021年1月9日起实施全民免费接种新冠疫苗并持续加快推进接种工作.某地为方便居民接种,共设置了A、B、C三个新冠疫苗接种点,每位接种者可去任一个接种点接种.若甲、乙两人去接种新冠疫苗,则两人不在同一接种点接种疫苗的概率为()A. B.C. D.4.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=05.命题,,则是()A., B.,C., D.,6.从装有2个红球和2个白球的口袋内任取两个球,则下列选项中的两个事件为互斥事件的是()A.至多有1个白球;都是红球 B.至少有1个白球;至少有1个红球C.恰好有1个白球;都是红球 D.至多有1个白球;至多有1个红球7.已知点是抛物线的焦点,点为抛物线上的任意一点,为平面上点,则的最小值为A.3 B.2C.4 D.8.在数列中,,则()A.2 B.C. D.9.已知函数为偶函数,则在处的切线方程为()A. B.C. D.10.已知抛物线的焦点与椭圆的右焦点重合,则抛物线的准线方程为()A. B.C. D.11.已知等比数列中,,,则公比()A. B.C. D.12.已知向量,则下列结论正确的是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的两个焦点分别为,,为双曲线上一点,且,则的值为________14.已知经过两点,的直线的斜率为1,则a的值为___________.15.必然事件的概率是________.16.已知正三角形边长为a,则该三角形内任一点到三边的距离之和为定值.类比上述结论,在棱长为a的正四面体内,任一点到其四个面的距离之和为定值_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知椭圆的左顶点,过右焦点的直线与椭圆相交于两点,当直线轴时,.(1)求椭圆的方程;(2)记,的面积分别为,求的取值范围;(3)若的重心在圆上,求直线的斜率.18.(12分)已知圆C:(1)若过点的直线l与圆C相交所得的弦长为,求直线l的方程;(2)若P是直线:上的动点,PA,PB是圆C的两条切线,A,B是切点,求四边形PACB面积的最小值19.(12分)设椭圆方程为,短轴长,____________.请在①与双曲线有相同的焦点,②离心率,③这三个条件中任选一个补充在上面的横线上,完成以下问题.(1)求椭圆的标准方程;(2)求以点为中点的弦所在的直线方程.20.(12分)(1)已知命题p:;命题q:,若“”为真命题,求x的取值范围(2)设命题p:;命题q:,若是的充分不必要条件,求实数a的取值范围21.(12分)在①,②,③,,成等比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求解.已知数列中,公差不等于的等差数列满足_________,求数列的前项和.22.(10分)设命题p:实数x满足,其中;命题q:若,且为真,求实数x的取值范围;若是的充分不必要条件,求实数m的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】求出函数的导数,根据导数在函数最值上的应用,即可求出结果.【详解】因为,所以,令,又,所以或;所以当时,;当时,;所以在单调递增,在上单调递减;所以;又,,所以;所以函数的值域为.故选:D.2、C【解析】根据角终边上有一点,得到,再根据为锐角,且,求得,再利用两角差的正切函数求解.【详解】因为角终边上有一点,所以,又因为为锐角,且,所以,所以,故选:C3、C【解析】利用古典概型的概率公式可求出结果【详解】由题知,基本事件总数为甲、乙两人不在同一接种点接种疫苗的基本事件数为由古典概型概率计算公式可得所求概率故选:4、A【解析】设出直线方程,利用待定系数法得到结果.【详解】设与直线平行的直线方程为,将点代入直线方程可得,解得则所求直线方程为.故A正确【点睛】本题主要考查两直线的平行问题,属容易题.两直线平行倾斜角相等,所以斜率相等或均不存在.所以与直线平行的直线方程可设为5、D【解析】根据特称命题的否定为全称命题,即可得到答案.【详解】因为命题,,所以,.故选:D6、C【解析】根据试验过程进行分析,利用互斥事件的定义对四个选项一一判断即可.【详解】对于A:“至多有1个白球”包含都是红球和一红一白,“都是红球”包含都是红球,所以“至多有1个白球”与“都是红球”不是互斥事件.故A错误;对于B:“至少有1个白球”包含都是白球和一红一白,“至少有1个红球”包含都是红球和一红一白,所以“至少有1个白球”与“至少有1个红球”不是互斥事件.故B错误;对于C:“恰好有1个白球”包含一红一白,“都是红球”包含都是红球,所以“恰好有1个白球”与“都是红球”是互斥事件.故C错误;对于D:“至多有1个红球”包含都是白球和一红一白,“至多有1个白球”包含都是红球和一红一白,所以“至多有1个白球”与“至多有1个红球”不是互斥事件.故D错误.故选:C7、A【解析】作垂直准线于点,根据抛物线的定义,得到,当三点共线时,的值最小,进而可得出结果.【详解】如图,作垂直准线于点,由题意可得,显然,当三点共线时,的值最小;因为,,准线,所以当三点共线时,,所以.故选A【点睛】本题主要考查抛物线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.8、D【解析】根据递推关系,代入数据,逐步计算,即可得答案.【详解】由题意得,令,可得,令,可得,令,可得,令,可得.故选:D9、A【解析】根据函数是偶函数可得,可求出,求出函数在处的导数值即为切线斜率,即可求出切线方程.【详解】函数为偶函数,,即,解得,,则,,且,切线方程为,整理得.故选:A.【点睛】本题考查函数奇偶性的应用,考查利用导数求切线方程,属于基础题.10、C【解析】先求出椭圆的右焦点,从而可求抛物线的准线方程.【详解】,椭圆右焦点坐标为,故抛物线的准线方程为,故选:C.【点睛】本题考查抛物线的几何性质,一般地,如果抛物线的方程为,则抛物线的焦点的坐标为,准线方程为,本题属于基础题.11、C【解析】利用等比中项的性质可求得的值,再由可求得结果.【详解】由等比中项的性质可得,解得,又,,故选:C.12、D【解析】由题可知:,,,故选;D二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】求得双曲线的a,b,c,不妨设P为双曲线右支上的点,|PF1|=m,|PF2|=n,利用双曲线的定义、余弦定理列出方程组,求出mn即可.【详解】双曲线的a=2,b=1,c=,不妨设P为双曲线右支上的点,|PF1|=m,|PF2|=n,则,①由余弦定理可得,②联立①②可得故答案为:214、6【解析】根据经过两点的直线斜率计算公式即可求的参数a﹒【详解】由题意可知,解得故答案为:615、1【解析】直接由必然事件的定义求解【详解】因为必然事件是一定要发生的,所以必然事件的概率是1,故答案为:116、【解析】利用正四面体内任一点可将正四面体分成四个小四面体,令它们的高分别为,由体积相等即可求得;【详解】正三角形边长为a,则该三角形内任一点到三边的距离分别为,即有:,解得同理,棱长为a的正四面体内,任一点到其四个面的距离分别为,即有:,解得故答案为:【点睛】本题考查了利用空间几何体的等体积法求高的和为定值,属于简单题;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)根据已知条件得到,,即可得到椭圆的方程.(2)首先设直线为,与椭圆联立得到,根据得到的范围,从而得到的范围.(3)设重心,根据重心性质得到,,再代入求解即可.小问1详解】因为左顶点,所以,根据,可得,解得,所以;【小问2详解】设直线为,则,则,,那么,根据解得,所以.【小问3详解】设重心,则:,,所以,所以,即所求直线的斜率为.18、(1)或.(2)8【解析】(1)先判断当斜率不存在时,不满足条件;再判断当斜率存在时,设利用垂径定理列方程求出k,即可求出直线方程;(2)过P作圆C的两条切线,切点分别为A、B,连结CA、CB,得到.判断出当时,最小,四边形PACB面积取得最小值.利用点到直线的距离公式求出,,即可求出四边形PACB面积的最小值.【小问1详解】圆C:化为标准方程为:,所以圆心为,半径为r=4.(1)当斜率不存在时,x=1代入圆方程得,弦长为,不满足条件;(2)当斜率存在时,设即.圆心C到直线l的距离,解得:或k=0,所以直线方程为或.【小问2详解】过P作圆C的两条切线,切点分别为A、B,连结CA、CB,则.因为,所以所以.所以当时,最小,四边形PACB面积取得最小值.所以,所以,即四边形PACB面积的最小值为8.19、(1)答案见解析,.(2).【解析】(1)若选①:求得双曲线得双曲线的焦点得出椭圆的,再由,可求得椭圆的标准方程;若选②:根据已知条件和椭圆的离心率可求得,从而得椭圆的标准方程;若选③:由已知建立方程,求解可求得,从而得椭圆的标准方程.(2)设直线的斜率为k,所求的直线方程为,代入椭圆的方程并整理得,设直线与椭圆的交点为,由根与系数的关系和中点坐标公式可求得答案.【小问1详解】解:若选①:由双曲线得双曲线的焦点和,因为椭圆与双曲线有相同的焦点,所以椭圆的,又,所以,所以,所以椭圆的标准方程为;若选②:因为,所以,又离心率,所以,即,解得,所以椭圆的标准方程为;若选③:因为,所以,即,又,解得,,所以椭圆的标准方程为;【小问2详解】解:由题意得直线的斜率必存在,设直线的斜率为k,所求的直线方程为,代入椭圆的方程并整理得,设直线与椭圆的交点为,则,因为点为AB中点,所以,解得,所以所求的直线方程为,即.20、(1)(2)【解析】根据复合命题的真值表知:p真q假;非q是非p的充分不必要条件,等价于p是q的充分不必要条件,等价于p是q的真子集【详解】命题p:,即;命题,即;由于“”为真命题,则p真q假,从而由q假得,,所以x的取值范围是命题p:,即命题q:,即由于是的充分不必要条件,则p是q的充分不必要条件即有,【点睛】本题考查了复合命题及其真假属基础题21、详见解析【解析】根据已知求出的通项公式.当①②时,设数列公差为,利用赋值法得到与的关系式,列方程求出与,求出,写出的通项公式,可得数列的通项公式,利用错位相减法求和即可;选②③时,设数列公差为,根据题意得到与的关系式,解出与,写出的通项公式,可得数列的通项公式,利用错位相减法求和即可;选①③时,设数列公差为,根据题意得到与的关系式,发现无解,则等差数列不存在,故不合题意.【详解】解:因为,,所以是以为首项,为公比的等比数列,所以,选①②时,设数列公差为,因为,所以,因为,所以时,,解得,,所以,所以.所以.(i)所以(ii)(i)(ii),得:所以.选②③时,设数列公差为,因为,所以,即,因为,,成等比数列,所以,即,化简得,因为,所以,从而,所以,所以,(i)所以(ii)(i)(ii),得:,所以.选①③时,设数列公差为,因为,所以时,,所以.又因为,,成等比数列,所以,即,化简得,因为,所以,从而无解,所以等差数列不存在,故不合题意.【点睛】本题考查了等差(比)数列的通项公式,考查了错位相减法在数列求和中的应用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《两只小象》教案设计
- 医疗健康产业园售楼部施工合同
- 林业项目招标投诉处理办法
- 工程施工农民工薪酬保障措施
- 制药业锅炉安全手册
- 商业广场供暖系统工程合同
- 社区服务公务车租赁协议
- 四人股东权益分配协议
- 美容养生招投标市场动态
- 篮球馆喜剧表演租赁协议
- 钢结构漏雨维修方案
- (高清版)DZT 0289-2015 区域生态地球化学评价规范
- 2024年强基计划解读 课件-2024届高三下学期主题班会
- 我国区域经济发展战略(二)
- 施工现场的组织与施工管理
- 合肥新站集贸市场规划方案
- 城市道路桥梁工程施工质量验收规范 DG-TJ08-2152-2014
- 内科学白血病教材教学课件
- 生物降解建筑材料PHA薄膜生产技术
- 基层区域医疗信息化(云HIS)解决方案
- 急诊急救知识培训
评论
0/150
提交评论