版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省江门市新会区梁启超纪念中学2024届高二数学第一学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某学习小组研究一种卫星接收天线(如图①所示),发现其曲面与轴截面的交线为抛物线,在轴截面内的卫星波束呈近似平行状态射入形为抛物线的接收天线,经反射聚焦到焦点处(如图②所示).已知接收天线的口径(直径)为3.6m,深度为0.6m,则该抛物线的焦点到顶点的距离为()A.1.35m B.2.05mC.2.7m D.5.4m2.某校高二年级统计了参加课外兴趣小组的学生人数,每人只参加一类,数据如下表:学科类别文学新闻经济政治人数400300100200若从参加课外兴趣小组的学生中采用分层抽样的方法抽取50名参加学习需求的问卷调查,则从文学、新闻、经济、政治四类兴趣小组中抽取的学生人数分别为()A.15,20,10,5 B.15,20,5,10C.20,15,10,5 D.20,15,5,103.已知动点满足,则动点的轨迹是()A.椭圆 B.直线C.线段 D.圆4.已知双曲线的离心率为5,则其标准方程为()A. B.C. D.5.设点是点,,关于平面的对称点,则()A.10 B.C. D.386.已知双曲线的两个顶点分别为A、B,点P为双曲线上除A、B外任意一点,且点P与点A、B连线的斜率为,若,则双曲线的离心率为()A. B.C.2 D.37.若某群体中成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.8.已知函数,则()A.0 B.1C.2 D.9.设,则“”是“直线与直线”平行的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件10.2020年北京时间11月24日我国嫦娥五号探月飞行器成功发射.嫦娥五号是我国探月工程“绕、落、回”三步走的收官之战,经历发射入轨、地月转移、近月制动、环月飞行、着陆下降、月面工作、月面上升、交会对接与样品转移、环月等待、月地转移、再入回收等11个关键阶段.在经过交会对接与样品转移阶段后,若嫦娥五号返回器在近月点(离月面最近的点)约为200公里,远月点(离月面最远的点)约为8600公里,以月球中心为一个焦点的椭圆形轨道上等待时间窗口和指令进行下一步动作,月球半径约为1740公里,则此椭圆轨道的离心率约为()A.0.32 B.0.48C.0.68 D.0.8211.在棱长为2的正方体中,为线段的中点,则点到直线的距离为()A. B.C. D.12.把直线绕原点逆时针转动,使它与圆相切,则直线转动的最小正角度A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆的圆心与点关于直线对称,直线与圆相交于、两点,且,则圆的方程为_________14.已知曲线与曲线有相同的切线,则________15.设是定义在上的可导函数,且满足,则不等式解集为_______16.若,若,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,抛物线:,点,过点的直线l与抛物线交于A,B两点:当l与抛物线的对称轴垂直时,(1)求抛物线的标准方程;(2)若点A在第一象限,记的面积为,的面积为,求的最小值18.(12分)在公差为的等差数列中,已知,且成等比数列.(Ⅰ)求;(Ⅱ)若,求.19.(12分)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD,PD=AD=2,E,F分别为AD和PB的中点.请用空间向量知识解答下列问题:(1)求证:EF//平面PDC;(2)求平面EFC与平面PBD夹角的余弦值.20.(12分)已知圆C的圆心为,且圆C经过点(1)求圆C的一般方程;(2)若圆与圆C恰有两条公切线,求实数m的取值范围21.(12分)如图,点是曲线上的动点(点在轴左侧),以点为顶点作等腰梯形,使点在此曲线上,点在轴上.设,等腰梯的面积为.(1)写出函数的解析式,并求出函数的定义域;(2)当为何值时,等腰梯形的面积最大?求出最大面积.22.(10分)已知数列是公比为正数的等比数列,且,.(1)求数列的通项公式;(2)若,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意先建立恰当的坐标系,可设出抛物线方程,利用已知条件得出点在抛物线上,代入方程求得p值,进而求得焦点到顶点的距离.【详解】如图所示,在接收天线的轴截面所在平面上建立平面直角坐标系xOy,使接收天线的顶点(即抛物线的顶点)与原点O重合,焦点F在x轴上设抛物线的标准方程为,由已知条件可得,点在抛物线上,所以,解得,因此,该抛物线的焦点到顶点的距离为1.35m,故选:A.2、D【解析】利用分层抽样的等比例性质求抽取的样本中所含各小组的人数.【详解】根据分层抽样的等比例性质知:文学小组抽取人数为人;新闻小组抽取人数为人;经济小组抽取人数为人;政治小组抽取人数为人;故选:D.3、C【解析】根据两点之间的距离公式的几何意义即可判定出动点轨迹.【详解】由题意可知表示动点到点和点的距离之和等于,又因为点和点的距离等于,所以动点的轨迹为线段.故选:4、D【解析】双曲线离心率公式和a、b、c的关系即可求得m,从而得到双曲线的标准方程.【详解】∵双曲线,∴,又,∴,∵离心率为,∴,解得,∴双曲线方程.故选:D.5、A【解析】写出点坐标,由对称性易得线段长【详解】点是点,,关于平面的对称点,的横标和纵标与相同,而竖标与相反,,,,直线与轴平行,,故选:A6、C【解析】根据题意设设,根据题意得到,进而求得离心率【详解】根据题意得到设,因为,所以,所以,则故选:C.7、A【解析】利用对立事件的概率公式可求得所求事件的概率.【详解】由对立事件概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.8、C【解析】对函数f(x)求导即可求得结果.【详解】函数,则,,故选C【点睛】本题考查正弦函数的导数的应用,属于简单题.9、D【解析】由两直线平行确定参数值,根据充分必要条件的定义判断【详解】时,两直线方程分别为,,它们重合,不平行,因此不是充分条件;反之,两直线平行时,,解得或,由上知时,两直线不平行,时,两直线方程分别为,,平行,因此,本题中也不是必要条件故选:D10、C【解析】由题意可知,求出的值,从而可求出椭圆的离心率【详解】解:由题意得,解得,所以离心率,故选:C11、D【解析】根据正方体的性质,在直角△中应用等面积法求到直线的距离.【详解】由正方体的性质:面,又面,故,直角△中,若到上的高为,∴,而,,,∴.故选:D.12、B【解析】根据直线过原点且与圆相切,求出直线的斜率,再数形结合计算最小旋转角【详解】解析:由题意,设切线为,∴.∴或.∴时转动最小∴最小正角为.故选B.【点睛】本题考查直线与圆的位置关系,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用对称条件求出圆心C的坐标,借助直线被圆所截弦长求出圆半径即可写出圆的方程.【详解】设圆的圆心,依题意,,解得,即圆心,点C到直线的距离,因圆截直线所得弦AB长为6,于是得圆C的半径所以圆的方程为:.故答案为:14、0【解析】设切点分别为,.利用导数的几何意义可得,则.由,,计算可得,进而求得点坐标代入方程即可求得结果.【详解】设切点分别为,由题意可得,则,即因为,,所以,即,解得,所以,则,解得故答案为:015、【解析】构造函数,结合题意求得,由此判断出在上递增,由此求解出不等式的解集.【详解】令,,故函数在上单调递增,不等式可化为,则,解得:【点睛】本小题主要考查构造函数法解不等式,考查化归与转化的数学思想方法,属于基础题.16、2【解析】首先利用二项展开式的通项公式,求,再利用赋值法求系数的和以及【详解】展开式的通项为,令,则,即,故,令,得.又,所以故故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)8.【解析】(1)将点代入抛物线方程可解得基本量.(2)设直线AB为,代入联立得关于的一元二次方程,运用韦达定理,得到关于的函数关系,再求函数最值.【小问1详解】当l与抛物线的对称轴垂直时,,,则代入抛物线方程得,所以抛物线方程是【小问2详解】设点,,直线AB方程为,联立抛物线整理得:,,∴,,有,由A在第一象限,则,即,∴,可得,又O到AB的距离,∴,而,∴,,当,,单调递减;,,单调递增;∴的最小值为,此时,.18、(Ⅰ)或(Ⅱ)【解析】(Ⅰ)由题意求得数列的公差后可得通项公式.(Ⅱ)结合条件可得,分和两种情况去掉中的绝对值后,利用数列的前n项和公式求解试题解析:(Ⅰ)∵成等比数列,∴,整理得,解得或,当时,;当时,所以或(Ⅱ)设数列前项和为,∵,∴,当时,,∴;当时,综上19、(1)证明见解析(2)【解析】(1)以为原点,以所在的直线分别为轴,建立空间直角坐标系,然后求出平面的法向量,再求出,判断是否与法垂直即可,(2)分别求出平面EFC与平面PBD的法向量,利用向量夹角公式求解即可【小问1详解】因PD⊥底面ABCD,平面,所以,因为四边形为正方形,所以,所以两两垂直,所以以为原点,以所在的直线分别为轴,建立空间直角坐标系,如图所示,则,因为E,F分别为AD和PB的中点,所以,所以,因为,所以平面,所以平面的一个法向量为,因为,所以,因为平面,所以EF//平面PDC;【小问2详解】设平面的法向量为,因为,,所以,令,则,设平面的法向量为,因为,所以,令,则,设平面EFC与平面PBD夹角为,,则,所以平面EFC与平面PBD夹角的余弦值为20、(1)(2)【解析】(1)设圆C的一般方程为.由圆C的圆心和圆C经过点求解;(2)根据圆与圆C恰有两条公切线,由圆O与圆C相交求解.【小问1详解】解:设圆C的一般方程为∵圆C的圆心,∴即又圆C经过点,∴解得经检验得圆C的一般方程为;【小问2详解】由(1)知圆C的圆心为,半径为5∵圆与圆C恰有两条公切线,∴圆O与圆C相交∴∵,∴∴m的取值范围是21、(1);(2)当时取到最大值,【解析】(1)设点,则根据题意得,,故;(2)令,研究函数的单调性,进而得的最值,进而得的最大值.【详解】解:(1)根据题意,设点,由是曲线上的动点得:,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《两只小象》教案设计
- 医疗健康产业园售楼部施工合同
- 林业项目招标投诉处理办法
- 工程施工农民工薪酬保障措施
- 制药业锅炉安全手册
- 商业广场供暖系统工程合同
- 社区服务公务车租赁协议
- 四人股东权益分配协议
- 美容养生招投标市场动态
- 篮球馆喜剧表演租赁协议
- DB11T 1359-2016 平原生态公益林养护技术导则
- 江苏省南京市六校联考2024-2025学年高一上学期期中考试语文试题(无答案)
- 预防校园欺凌主题班会课件(共36张课件)
- 公关服务合同
- 芯片基础知识单选题100道及答案解析
- 江苏省苏州市2024-2025学年七年级上学期期中数学摸底调研卷
- GB/T 44352-2024燃油蒸发排放系统用活性炭通用要求
- 2024山东济南轨道交通集团限公司招聘49人高频难、易错点500题模拟试题附带答案详解
- 市政道路交通疏导方案施工方案
- 2024年新人教版一年级上册数学课件 第四单元11~20的认识 第4课时简单加、减法
- “数字三品”应用场景典型案例申报书
评论
0/150
提交评论