




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省安达市育才高中2024届数学高二上期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块 B.3474块C.3402块 D.3339块2.已知双曲线的右焦点为F,则点F到其一条渐近线的距离为()A.1 B.2C.3 D.43.设变量,满足约束条件,则目标函数的最大值为()A. B.0C.6 D.84.已知数列满足,且,为其前n项的和,则()A. B.C. D.5.直线被圆所截得的弦长为()A. B.C. D.6.在平形六面体中,其中,,,,,则的长为()A. B.C. D.7.若函数恰好有个不同的零点,则的取值范围是()A. B.C. D.8.在的展开式中,只有第4项的二项式系数最大,则()A.5 B.6C.7 D.89.在等差数列中,,,则()A. B.C. D.10.过原点O作两条相互垂直的直线分别与椭圆交于A、C与B、D,则四边形ABCD面积最小值为()A B.C. D.11.已知点P在抛物线上,点Q在圆上,则的最小值为()A. B.C. D.12.我们知道,偿还银行贷款时,“等额本金还款法”是一种很常见的还款方式,其本质是将本金平均分配到每一期进行偿还,每一期的还款金额由两部分组成,一部分为每期本金,即贷款本金除以还款期数,另一部分是利息,即贷款本金与已还本金总额的差乘以利率.自主创业的大学生张华向银行贷款的本金为48万元,张华跟银行约定,按照等额本金还款法,每个月还一次款,20年还清,贷款月利率为,设张华第个月的还款金额为元,则()A.2192 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若抛物线上一点到其准线的距离为4,则抛物线的标准方程为___________.14.若曲线在点处的切线斜率为,则___________.15.若圆心坐标为圆被直线截得的弦长为,则圆的半径为______.16.已知直线l的方向向量,平面的法向量,若,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四面体ABCD中,,平面ABC,点M为棱AB的中点,,(1)证明:;(2)求平面BCD和平面DCM夹角的余弦值18.(12分)已知数列,,,且,其中为常数(1)证明:;(2)是否存在,使得为等差数列?并说明理由19.(12分)新冠疫情下,有一学校推出了食堂监管力度的评价与食品质量的评价系统,每项评价只有合格和不合格两个选项,师生可以随时进行评价,某工作人员利用随机抽样的方法抽取了200位师生的信息,发现对监管力度满意的占75%,对食品质量满意的占60%,其中对监管力度和食品质量都满意的有80人.(1)完成列联表,试问:是否有99%的把握判断监管力度与食品质量有关联?监督力度情况食品质量情况对监督力度满意对监督力度不满意总计对食品质量满意80对食品质量不满意总计200(2)为了改进工作作风,针对抽取的200位师生,对监管力度不满意的人抽取3位征求意见,用X表示3人中对监管力度与食品质量都不满意的人数,求X的分布列与均值.参考公式:,其中.参考数据:①当时,有90%的把握判断变量A、B有关联;②当时,有95%的把握判断变量A、B有关联;③当时,有99%的把握判断变量A、B有关联.20.(12分)(1)已知等轴双曲线的上顶点到一条渐近线的距离为,求此双曲线的方程;(2)已知抛物线的焦点为,设过焦点且倾斜角为的直线交抛物线于,两点,求线段的长21.(12分)已知椭圆的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设斜率为k的直线与椭圆C交于两点,O为坐标原点,若的面积为定值,判断是否为定值,如果是,求出该定值;如果不是,说明理由.22.(10分)(1)已知集合,.:,:,并且是的充分条件,求实数的取值范围(2)已知:,,:,,若为假命题,求实数的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,设为的前n项和,由题意可得,解方程即可得到n,进一步得到.【详解】设第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,,设为的前n项和,则第一层、第二层、第三层的块数分别为,因为下层比中层多729块,所以,即即,解得,所以.故选:C【点晴】本题主要考查等差数列前n项和有关的计算问题,考查学生数学运算能力,是一道容易题.2、A【解析】由双曲线方程可写出右焦点坐标,再写一渐近线方程,根据点到直线的距离公式可得答案.【详解】双曲线的右焦点F坐标为,根据双曲线的对称性,不妨取一条渐近线为,故点F到渐近线的距离为,故选:A3、C【解析】画出可行域,利用几何意义求出目标函数最大值.【详解】画出图形,如图所示:阴影部分即为可行域,当目标函数经过点时,目标函数取得最大值.故选:C4、B【解析】根据等比数列的前n项和公式即可求解.【详解】由题可知是首项为2,公比为3的等比数列,则.故选:B.5、A【解析】求得圆心坐标和半径,结合点到直线的距离公式和圆的弦长公式,即可求解.【详解】由圆的方程可知圆心为,半径为,圆心到直线的距离,所以弦长为.故选:A.6、B【解析】根据空间向量基本定理、加法的运算法则,结合空间向量数量积的运算性质进行求解即可.【详解】因为是平行六面体,所以,所以有:,因此有:,因为,,,,,所以,所以,故选:B7、D【解析】分析可知,直线与函数的图象有个交点,利用导数分析函数的单调性与极值,数形结合可求得实数的取值范围.【详解】令,可得,构造函数,其中,由题意可知,直线与函数的图象有个交点,,由,可得或,列表如下:增极大值减极小值增所以,,,作出直线与函数的图象如下图所示:由图可知,当时,即当时,直线与函数的图象有个交点,即函数有个零点.故选:D.8、B【解析】当n为偶数时,展开式中第项二项式系数最大,当n为奇数时,展开式中第和项二项式系数最大.【详解】因为只有一项二项式系数最大,所以n为偶数,故,得.故选:B9、B【解析】利用等差中项的性质可求得的值,进而可求得的值.【详解】由等差中项的性质可得,则.故选:B.10、A【解析】直线AC、BD与坐标轴重合时求出四边形面积,与坐标轴不重合求出四边形ABCD面积最小值,再比较大小即可作答.【详解】因四边形ABCD的两条对角线互相垂直,由椭圆性质知,四边形ABCD的四个顶点为椭圆顶点时,而,四边形ABCD的面积,当直线AC斜率存在且不0时,设其方程为,由消去y得:,设,则,,直线BD方程为,同理得:,则有,当且仅当,即或时取“=”,而,所以四边形ABCD面积最小值为.故选:A11、C【解析】先计算抛物线上的点P到圆心距离的最小值,再减去半径即可.【详解】设,由圆心,得,∴时,,∴故选:C.12、D【解析】计算出每月应还的本金数,再计算第n个月已还多少本金,由此可计算出个月的还款金额.【详解】由题意可知:每月还本金为2000元,设张华第个月的还款金额为元,则,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先由抛物线的方程求出准线的方程,然后根据点到准线的距离可求,进而可得抛物线的标准方程.【详解】抛物线的准线方程为,点到其准线的距离为,由题意可得,解得,故抛物线的标准方程为.故答案为:.14、【解析】由导数的几何意义求解即可【详解】,,解得.故答案为:115、【解析】利用垂径定理计算即可.【详解】设圆的半径为,则,得.故答案为:.16、【解析】由,可得∥,从而可得,代入坐标列方程可求出,从而可求出【详解】因为直线l的方向向量,平面的法向量,,所以∥,所以存在唯一实数,使,所以,所以,解得,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)根据题意,利用线面垂直的判定定理证明平面ABD即可;(2)以A为原点,分别以,,方向为x轴,y轴,z轴的正方向的空间直角坐标系,分别求得平面BCD的一个法向量和平面DCM的一个法向量,然后由求解【小问1详解】证明:∵平面ABC,∴,又,,∴平面ABD,∴【小问2详解】如图,以A为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系,则,,,,,依题意,可得,设为平面BCD的一个法向量,则,不妨令,可得设为平面DCM的一个法向量,则,不妨令,可得,所以所以平面BCD和平面DCM的夹角的余弦值为18、(1)证明见解析(2)存在;理由见解析【解析】(1)由得两式相减可得答案;(2)利用得,可得,是首项为1,公差为4的等差数列,是首项为3,公差为4的等差数列,因此存在【小问1详解】由题设,,,两式相减得,,由于,所以【小问2详解】由题设,,,可得,由(1)知,.令,解得,故,由此可得,是首项为1,公差为4的等差数列,;又,同理,是首项为3,公差为4的等差数列,所以,所以.因此存在,使得为等差数列19、(1)列联表见解析,有99%的把握判断监管力度与食品质量有关联;(2)X的分布列见解析,X的期望为【解析】(1)根据给定条件完善列联表,再计算的观测值并结合给定数据即可作答.(2)求出X的可能值及各个值对应的概率列出X的分布列,再计算期望作答.【小问1详解】对监管力度满意的有,对食品质量满意的有,列联表如下:对监督力度满意对监督力度不满意总计对食品质量满意8040120对食品质量不满意701080总计15050200则的观测值为:,所以有99%的把握判断监管力度与食品质量有关联.【小问2详解】由(1)及已知得,X的所有可能值为:0,1,2,3,,,,,X的分布列为:X0123PX的期望为:.【点睛】易错点睛:独立性检验得出的结论是带有概率性质的,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释20、(1);(2)8.【解析】(1)由等轴双曲线的一条渐近线方程为,再由点到直线距离公式求解即可;(2)求得直线方程代入抛物线,结合焦点弦长求解即可.【详解】(1)由等轴双曲线的一条渐近线方程为,且顶点到渐近线的距离为,可得,解得,故双曲线方程(2)抛物线的焦点为直线的方程为,即与抛物线方程联立,得,消,整理得,设其两根为,,且由抛物线的定义可知,所以,线段的长是【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式21、(1)(2)是定值,定值为6【解析】(1)根据题意条件,可直接求出的值,然后再利用条件中、的关系,借助即可求解出、的值,从而得到椭圆方程;(2)根据已知条件设出、所在直线方程,然后与椭圆联立方程,分别表示出根与系数的关系,再表示出弦长关系,再计算点到直线的距离,把面积用和的式子表示出来,通过给出的面积的值,找到和的等量关系,将等量关系带入到利用跟与系数关系组合成的中即可得到答案.【小问1详解】由题意:,由知:,故椭圆C的标准方程为,【小问2详解】设:,①椭圆.②联立①②得:,,即∴,O到直线l的距离,∴,∴,即,∴.故为定值6.22、(1);(2)【解析】(1)由二次函数的性质,求得,又由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 硬件设备购销合同范本
- 融资租赁合同特征
- AAA指纹锁公司商业计划书
- 中招试卷分析
- 《精护》第二章-精神疾病的基本知识
- 试用期转正工作总结报告600字(28篇)
- 加气轿车出售合同样本
- 房屋贷款违约险协议
- 消化内科门诊患者原发性胆汁反流相关危险因素及精神心理特征的调查研究
- 长期稻虾共作对土壤质量和团聚体组成及其碳氮矿化的影响
- 2024年第三届浙江技能大赛(电工赛项)理论考试题库(含答案)
- 2024年度-工程造价培训课件全新
- 高标准农田跟踪审计、工程中间计量、变更价格调整及竣工结算审核项目投标方案(技术方案)
- 行政事务试题库及答案
- 教师备课教案模板
- 2023中央空调智能化控制技术规范
- 第八章+机械能守恒定律+单元教学设计及案例分析+课件-+物理人教版(2019)必修第二册
- 7《中华民族一家亲》第一课时《中华民族大家庭》(说课教学设计)部编版道德与法治五年上册
- 五年级科学实验模拟训练(4)附有答案
- 施工企业生产安全事故应急资源调查报告
- CJT233-2016 建筑小区排水用塑料检查井
评论
0/150
提交评论