河南省信阳市息县一中2024届数学高二上期末预测试题含解析_第1页
河南省信阳市息县一中2024届数学高二上期末预测试题含解析_第2页
河南省信阳市息县一中2024届数学高二上期末预测试题含解析_第3页
河南省信阳市息县一中2024届数学高二上期末预测试题含解析_第4页
河南省信阳市息县一中2024届数学高二上期末预测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省信阳市息县一中2024届数学高二上期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的左焦点是,右焦点是,点P在椭圆上,如果线段的中点在y轴上,那么()A.3:5 B.3:4C.5:3 D.4:32.在某市第一次全民核酸检测中,某中学派出了8名青年教师参与志愿者活动,分别派往2个核酸检测点,每个检测点需4名志愿者,其中志愿者甲与乙要求在同一组,志愿者丙与丁也要求在同一组,则这8名志愿者派遣方法种数为()A.20 B.14C.12 D.63.已知在四棱锥中,平面,底面是边长为4的正方形,,E为棱的中点,则直线与平面所成角的正弦值为()A. B.C. D.4.设变量满足约束条件,则的最大值为()A.0 B.C.3 D.45.函数的定义域是,,对任意,,则不等式的解集为()A. B.C.或 D.或6.设满足则的最大值为A. B.2C.4 D.167.用3,4,5,6,7,9这6个数组成没有重复数字的六位数,下列结论正确的有()A.在这样的六位数中,奇数共有480个B.在这样的六位数中,3、5、7、9相邻的共有120个C.在这样的六位数中,4,6不相邻的共有504个D.在这样六位数中,4个奇数从左到右按照从小到大排序的共有60个8.已知椭圆C:的两个焦点分别为,,椭圆C上有一点P,则的周长为()A.8 B.10C. D.129.已知圆与圆,则圆M与圆N的位置关系是()A.内含 B.相交C.外切 D.外离10.已知数列是等差数列,下面的数列中必为等差数列的个数为()①②③A.0 B.1C.2 D.311.下列命题中,正确的是()A.若a>b,c>d,则ac>bd B.若ac>bc,则a<bC.若a>b,c>d,则a﹣c>b﹣d D.若,则a<b12.已知动圆M与直线y=2相切,且与定圆C:外切,求动圆圆心M的轨迹方程A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆:和圆:,动圆M同时与圆及圆外切,则动圆的圆心M的轨迹方程为______.14.设抛物线C:的焦点为F,准线l与x轴的交点为M,P是C上一点,若|PF|=5,则|PM|=__.15.已知函数是上的奇函数,,对,成立,则的解集为_________16.数学中,多数方程不存在求根公式.因此求精确根非常困难,甚至不可能.从而寻找方程的近似根就显得特别重要.例如牛顿迭代法就是求方程近似根的重要方法之一,其原理如下:假设是方程的根,选取作为的初始近似值,在点处作曲线的切线,则与轴交点的横坐标称为的一次近似值,在点处作曲线的切线.则与轴交点的横坐标称为的二次近似值.重复上述过程,用逐步逼近.若给定方程,取,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,直线:,直线m过点N且与垂直,直线m交圆于两点A,B.(1)求直线m的方程;(2)求弦AB的长.18.(12分)已知数列的前n项和为,且(1)求数列的通项公式;(2)若,数列的前n项和为,求的值19.(12分)如图,在四棱锥中,已知平面ABCD,为等边三角形,,,.(1)证明:平面PAD;(2)若M是BP的中点,求二面角的余弦值.20.(12分)(1)已知:方程表示双曲线;:关于的不等式有解.若为真,求的取值范围;(2)已知,,.若p是q的必要不充分条件,求实数m的取值范围.21.(12分)已知对于,函数有意义,关于k的不等式成立.(1)若为假命题,求k的取值范围;(2)若p是q的必要不充分条件,求m的取值范围.22.(10分)已知椭圆,焦点,A,B是上关于原点对称的两点,的周长的最小值为(1)求的方程;(2)直线FA与交于点M(异于点A),直线FB与交于点N(异于点B),证明:直线MN过定点

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出椭圆的焦点坐标,再根据点在椭圆上,线段的中点在轴上,求得点坐标,进而计算,从而求解.【详解】由椭圆方程可得:,设点坐标为,线段的中点为,因为线段中点在轴上,所以,即,代入椭圆方程得或,不妨取,则,所以,故选:A.2、B【解析】分(甲乙)、(丙丁)再同一组和不在同一组两种情况讨论,按照分类、分步计数原理计算可得;【详解】解:依题意甲乙丙丁四人再同一组,有种;(甲乙),(丙丁)不在同一组,先从其余4人选2人与甲乙作为一组,另外2人与丙丁作为一组,再安排到两个核酸检测点,则有种,综上可得一共有种安排方法,故选:B3、B【解析】建立空间直角坐标系,以向量法去求直线与平面所成角的正弦值即可.【详解】平面,底面是边长为4的正方形,则有,而,故平面,以A为原点,分别以AB、AD、AP所在直线为x轴、y轴、z轴建立空间直角坐标系如图:则,,,设直线与平面所成角为,又由题可知为平面的一个法向量,则故选:B4、A【解析】先画出约束条件所表示的平面区域,然后根据目标函数的几何意义,即可求出目标函数的最大值.【详解】解:满足约束条件的可行域如下图所示:由,可得,因为目标函数,即,表示斜率为,截距为的直线,由图可知,当直线经过时截距取得最小值,即取得最大值,所以的最大值为,故选:A.5、A【解析】构造函数,结合已知条件可得恒成立,可得为上的减函数,再由,从而将不等式转换为,根据单调性即可求解.【详解】构造函数,因为,所以为上的增函数又因为,所以原不等式转化为,即,解得.所以原不等式的解集为,故选:A.6、C【解析】可行域如图,则直线过点A(0,1)取最大值2,则的最大值为4,选C.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.7、A【解析】A选项,特殊位置优先考虑求出这样的六位数中,奇数个数;B选项,相邻问题捆绑法求解;C选项,不相邻问题插空法求解;D选项,定序问题使用倍缩法求解.【详解】用3,4,5,6,7,9这6个数组成没有重复数字的六位数,个位为3,5,7,9中的一位,有种,其余五个数位上的数字进行全排列,有种,综上:在这样的六位数中,奇数共有个,A正确;在这样的六位数中,3、5、7、9相邻,将3、5、7、9捆绑,有种排法,再与4,6进行全排列,故共有个,B错误;在这样的六位数中,4,6不相邻,先将3、5、7、9进行全排列,再从五个位置中任选两个将4,6排列,综上共有个,C错误;在这样的六位数中,4个奇数从左到右按照从小到大排序的共有个,D错误.故选:A8、B【解析】根据椭圆的定义可得:,所以的周长等于【详解】因为,,所以,故的周长为故选:B9、B【解析】将两圆方程化为标准方程形式,计算圆心距,和两圆半径的和差比较,可得答案,【详解】圆,即,圆心,圆,即,圆心,则故有,所以两圆是相交的关系,故选:B10、C【解析】根据等差数列的定义判断【详解】设的公差为,则,是等差数列,,是常数列,也是等差数列,若,则不是等差数列,故选:C11、D【解析】运用不等式性质,结合特殊值法,对选项注逐一判断正误即可.【详解】选项A中,若,时,则成立,否则,若,则,显然错误,故选项A错误;选项B中,若,,则能推出,否则,若,则,显然错误,故选项B错误;选项C中,若,则,显然错误,故选项C错误;选项D中,若,显然,由不等式性质知不等式两边同乘以一个正数,不等式不变号,即.故选:D12、D【解析】由题意动圆M与直线y=2相切,且与定圆C:外切∴动点M到C(0,-3)的距离与到直线y=3的距离相等由抛物线的定义知,点M的轨迹是以C(0,-3)为焦点,直线y=3为准线的抛物线故所求M的轨迹方程为考点:轨迹方程二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据动圆同时与圆及圆外切,即可得到几何关系,再结合双曲线的定义可得动点的轨迹方程.【详解】由题,设动圆的半径为,圆的半径为,圆的半径为,当动圆与圆,圆外切时,,,所以,因为圆心,,即,又根据双曲线的定义,得动点的轨迹为双曲线的上支,其中,,所以,则动圆圆心的轨迹方程是;故答案为:14、【解析】根据抛物线的性质及抛物线方程可求坐标,进而得解.【详解】由抛物线的方程可得焦点,准线,由题意可得,设,有抛物线的性质可得:,解得x=4,代入抛物线的方程可得,所以,故答案为:.15、【解析】根据题意可以设,求其导数可知在上的单调性,由是上的奇函数,可知的奇偶性,进而可知在上的单调性,由可知的零点,最后分类讨论即可.【详解】设,则对,,则在上为单调递增函数,∵函数是上的奇函数,∴,∴,∴偶函数,∴在上为单调递减函数,又∵,∴,由已知得,所以当时,;当时,;当时,;当时,;若,则;若,则或,解得或或;则的解集为.故答案为:.16、【解析】根据牛顿迭代法的知识求得.【详解】构造函数,,切线的方程为,与轴交点的横坐标为.,所以切线的方程为,与轴交点的横坐标为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)求出斜率,用点斜式求直线方程;(2)利用垂径定理求弦长.【小问1详解】因为直线:,所以直线的斜率为.因为直线m过点N且与垂直,所以直线的斜率为,又过点,所以直线:,即【小问2详解】直线与圆相交,则圆心到直线的距离为:,圆的半径为,所以弦长18、(1);(2).【解析】(1)根据给定的递推公式结合“当时,”探求相邻两项的关系计算作答.(2)由(1)的结论求出,再利用裂项相消法求出,即可作答.【小问1详解】依题意,,,则当时,,于是得:,即,而当时,,即有,因此,,,所以数列是以2为首项,2为公比的等比数列,,所以数列的通项公式是.【小问2详解】由(1)知,,从而有,所以.19、(1)证明见解析(2)【解析】(1)根据条件先证明,再根据线面平行的判定定理证明平面PAD;(2)确定坐标原点,建立空间直角坐标系,从而求出相关的点的坐标,进而求得相关向量的坐标,再求相关平面的法向量,根据向量的夹角公式求得结果.【小问1详解】证明:由已知为等边三角形,且,所以又因为,,在中,,又,所以在底面中,,又平面,平面,所以平面.【小问2详解】解:取的中点,连接,则,由(1)知,所以,分别以,,为,,轴建立空间直角坐标系.则,,,所以,由已知可知平面ABCD的一个法向量设平面的一个法向量为,由,即,得,令,则,所以,由图形可得二面角为锐角,所以二面角的余弦值为.20、(1)1m2;(2)(0,1]【解析】(1)由pq为真,可得p真且q假,然后分别求出p真,q假时的的取值范围,再求交集即可,(2)求得p:1x2,再由p是q的必要不充分条件,得,解不等式组可求得答案【详解】(1)因为pq为真,所以p真且q假,p真:m1m301m3,q假,则不等式无解,则402m2,所以1m2.(2)依题意,p:1x2,因p是q的必要不充分条件,于是得(不同时取等号),解得0m1,所以实数m的取值范围是(0,1].21、(1)(2)【解析】(1)由与的真假相反,得出为真命题,将定义域问题转化为不等式的恒成立问题,讨论参数的取值,得出答案;(2)由必要不充分条件的定义得出,讨论的取值结合包含关系得出的范围.【详解】解:(1)因为为假命题,所以为真命题,所以对恒成立.当时,不符合题意;当时,则有,则.综上,k的取值范围为.(2)由,得.由(1)知,当为真命题时,则令令因为p是q的必要不充分条件,所以当时,,,解得当时,,符合题意;当时,,符合题意;所以的取值范围是【点睛】本题主要考查了不等式的恒成立问题以及根据必要不充分条件求参数范围,属于中档题.22、(1)(2)证明见解析【解析】(1)设椭圆的左焦点为,根据椭圆的对称性可得,则三角形的周长为,再设根据二次函数的性质得到,即可求出的周长的最小值为,从而得到,再根据,即可求出、,从而求出椭圆方程;(2)设直线MN的方程,,,,联立直线与椭圆方程,消元列出韦达定理,再设直线的方程、,直线的方程、,联立直线方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论