版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福州市屏东中学2023-2024学年高二上数学期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在直三棱柱中,D为棱的中点,,,,则异面直线CD与所成角的余弦值为()A. B.C. D.2.抛物线的焦点坐标是A. B.C. D.3.若构成空间的一个基底,则下列向量能构成空间的一个基底的是()A.,, B.,,C.,, D.,,4.在平面直角坐标系xOy中,双曲线(,)的左、右焦点分别为,,点M是双曲线右支上一点,,且,则双曲线的离心率为()A. B.C. D.5.设函数在R上可导,其导函数为,且函数的图像如题(8)图所示,则下列结论中一定成立的是A.函数有极大值和极小值B.函数有极大值和极小值C.函数有极大值和极小值D.函数有极大值和极小值6.函数的图象如图所示,则下列大小关系正确的是()A.B.C.D.7.若双曲线的一个焦点为,则的值为()A. B.C.1 D.8.已知向量,,若与共线,则实数值为()A. B.C.1 D.29.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.椭圆的焦点坐标为()A., B.,C., D.,11.设等比数列的前项和为,且,则()A. B.C. D.12.若函数,(其中,)的最小正周期是,且,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知5件产品中有2件次品、3件合格品,从这5件产品中任取2件,求2件都是合格品的概率_______.14.如图所示,在平行六面体中,,若,则___________.15.双曲线的右顶点为A,右焦点为F,过点F平行于双曲线的一条渐近线的直线与双曲线交于点B,则的面积为__________16.已知点P是双曲线右支上的一点,且以点P及焦点为定点的三角形的面积为4,则点P的坐标是_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2021年国务院政府工作报告中指出,扎实做好碳达峰、碳中和各项工作,制定2030年前碳排放达峰行动方案,优化产业结构和能源结构.汽车行业是碳排放量比较大的行业之一,若现对CO2排放量超过130g/km的MI型新车进行惩罚(视为排放量超标),某检测单位对甲、乙两类MI型品牌的新车各抽取了5辆进行CO2排放量检测,记录如下(单位:g/km):甲80110120140150乙100120xy160经测算发现,乙类品牌车CO2排放量的均值为乙=120g/km.(1)求甲类品牌汽车的排放量的平均值及方差;(2)若乙类品牌汽车比甲类品牌汽车CO2的排放量稳定性好,求x的取值范围.18.(12分)已知函数在处的切线垂直于直线.(1)求(2)求的单调区间19.(12分)为落实国家扶贫攻坚政策,某地区应上级扶贫办的要求,对本地区所有贫困户每年年底进行收入统计,下表是该地区贫困户从2017年至2020年的收入统计数据:(其中y为贫困户的人均年纯收入)年份2017年2018年2019年2020年年份代码1234人均年纯收入y/百元25283235(1)在给定的坐标系中画出A贫困户的人均年纯收入关于年份代码的散点图;(2)根据上表数据,用最小二乘法求出y关于x的线性回归方程,并估计A贫困户在年能否脱贫.(注:假定脱贫标准为人均年纯收入不低于元)参考公式:,参考数据:,.20.(12分)已知函数.(1)求函数在处的切线方程;(2)求函数在区间上的最大值与最小值.21.(12分)已知是各项均为正数的等比数列,且,.(1)求数列的通项公式;(2)数列通项公式为,求数列的前n项和.22.(10分)设,分别是椭圆:的左、右焦点,的离心率为,点是上一点.(1)求椭圆的方程;(2)过点的直线交椭圆E于A,B两点,且,求直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】以C为坐标原点,分别以,,方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系.运用异面直线的空间向量求解方法,可求得答案.【详解】解:以C为坐标原点,分别以,,的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系.由已知可得,,,,则,,所以.又因为异面直线所成的角的范围为,所以异面直线与所成角的余弦值为.故选:A.2、D【解析】根据抛物线的焦点坐标为可知,抛物线即的焦点坐标为,故选D.考点:抛物线的标准方程及其几何性质.3、B【解析】由空间向量内容知,构成基底的三个向量不共面,对选项逐一分析【详解】对于A:,因此A不满足题意;对于B:根据题意知道,,不共面,而和显然位于向量和向量所成平面内,与向量不共面,因此B正确;对于C:,故C不满足题意;对于D:显然有,选项D不满足题意.故选:B4、A【解析】本题考查双曲线的定义、几何性质及直角三角形的判定即可解决.【详解】因为,,所以在中,边上的中线等于的一半,所以.因为,所以可设,,则,解得,所以,由双曲线的定义得,所以双曲线的离心率故选:A5、D【解析】则函数增;则函数减;则函数减;则函数增;选D.【考点定位】判断函数的单调性一般利用导函数的符号,当导函数大于0则函数递增,当导函数小于0则函数递减6、C【解析】根据导数的几何意义可得答案.【详解】因为函数在某点处的导数值表示的是此点处切线的斜率,所以由图可得,故选:C7、B【解析】由题意可知双曲线的焦点在轴,从而可得,再列方程可求得结果【详解】因为双曲线的一个焦点为,所以,,所以,解得,故选:B8、D【解析】根据空间向量共线有,,结合向量的坐标即可求的值.【详解】由题设,有,,则,可得.故选:D9、C【解析】利用函数在上单调递减即可求解.【详解】解:因为函数在上单调递减,所以若,,则;反之若,,则.所以若,则“”是“”的充要条件,故选:C.10、A【解析】由题方程化为椭圆的标准方程求出c,则椭圆的焦点坐标可求【详解】由题得方程可化为,所以所以焦点为故选:A.11、C【解析】根据给定条件求出等比数列公比q的关系,再利用前n项和公式计算得解.【详解】设等比数列的的公比为q,由得:,解得,所以.故选:C12、B【解析】利用余弦型函数的周期公式可求得的值,由结合的取值范围可求得的值.【详解】由已知可得,且,因此,.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】列举总的基本事件及满足题目要求的基本事件,然后用古典概型的概率公式求解即可.【详解】设5件产品中的次品为,合格品为,则从这5件产品中任取2件,有共10个基本事件,其中2件都是合格品的有共3个基本事件,故2件都是合格品的概率为故答案为:.14、2【解析】题中几何体为平行六面体,就要充分利用几何体的特征进行转化,,再将转化为,以及将转化为,,总之等式右边为,,,从而得出,.【详解】解:因为,又,所以,,则.故答案为:2.【点睛】要充分利用几何体的几何特征,以及将作为转化的目标,从而得解.15、【解析】由平行线的性质求出斜率,由点斜式求出直线方程,然后求出交点坐标,由三角形面积公式可得结果.【详解】双曲线的右顶点,右焦点,,所以渐近线方程为,不妨设直线FB的方程为,将代入双曲线方程整理,得,解得,,所以,所以故答案为:.16、【解析】由题可得P到x轴的距离为1,把代入,得,可得P点坐标【详解】设,由题意知,所以,则,由题意可得,把代入,得,所以P点坐标为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),600(2)【解析】用平均数及方差公式计算即可.用平均值得、之间的关系,再由,解不等式可得解.【小问1详解】甲类品牌汽车的排放量的平均值,甲类品牌汽车的排放量的方差.【小问2详解】由题意知乙类品牌汽车的排放量的平均值=120(g/km),得x+y=220,故y=220-x,所以乙类品牌汽车的排放量的方差,因为乙类品牌汽车比甲类品牌汽车的排放量稳定性好,所以,解得.18、(1);(2)在内单调递减,在内单调递增【解析】(1)由题意求导可得,代入可得(1),从而求,进而求切线方程;(2)的定义域为,,从而求单调性【详解】解:(1)因为在处切线垂直于,所以(2)因为的定义域为当时,当时,在内单调递减,在内单调递增【点睛】本题考查导数的几何意义,利用导数研究函数的单调性,属于基础题.19、(1)散点图见解析;(2),能够脱贫.【解析】(1)直接画出点即可;(2)利用公式求出与,即可求出,把代入即可估计出A贫困户在2021年能否脱贫.【小问1详解】画出y关于x的散点图,如图所示:【小问2详解】根据表中数据,计算,,又因为,,所以,,关于的线性回归方程,当时,(百元),估计年A贫困户人均年纯收入达到元,能够脱贫.20、(1)(2),【解析】(1)根据导数的几何意义即可求解;(2)根据导数的正负判断f(x)的单调性,根据其单调性即可求最大值和最小值.【小问1详解】,切点为(1,-2),∵,∴切线斜率,切线方程为;【小问2详解】令,解得,1200极大值极小值2∵,,∴当时,,.21、(1);(2).【解析】(1)设的公比为,利用基本量运算求出公比,可得数列的通项公式;(2)利用错位相减法计算出数列的前n项和【详解】(1)设的公比为,由题意知:,.又,解得,,所以.(2).令,则,因此,又,两式相减得所以.【点睛】方法点睛:本题考查等比数列的通项公式,考查数列的求和,数列求和的方法总结如下:
公式法,利用等差数列和等比数列的求和公式进行计算即可;
裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;
错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初三上册半期数学试卷
- 初中去学数学试卷
- 合伙企业设立合同
- 农业生态保护与绿色发展实践案例
- 物流加盟协议合同
- 2024年春季学期教研工作计划(35篇)
- 金融服务企业风险管理计划
- 常州溧阳二模数学试卷
- 智能烹饪设备研发合作协议
- 大健康产业智能健康管理平台开发项目名称
- (八省联考)河南省2025年高考综合改革适应性演练 思想政治试卷(含答案)
- 《特种设备重大事故隐患判定准则》知识培训
- 山东省枣庄市滕州市2023-2024学年高二上学期期末考试政治试题 含答案
- 《外盘期货介绍》课件
- 综合测试 散文阅读(多文本)(解析版)-2025年高考语文一轮复习(新高考)
- 2024年07月11396药事管理与法规(本)期末试题答案
- 《PMC培训资料》课件
- 2024驾校经营权承包合同
- 福建省能化集团笔试题目
- 2025年初级社会工作者综合能力全国考试题库(含答案)
- 快递公司与驿站合作协议模板 3篇
评论
0/150
提交评论