北京市西城区第十五中学2023-2024学年数学高二上期末质量检测模拟试题含解析_第1页
北京市西城区第十五中学2023-2024学年数学高二上期末质量检测模拟试题含解析_第2页
北京市西城区第十五中学2023-2024学年数学高二上期末质量检测模拟试题含解析_第3页
北京市西城区第十五中学2023-2024学年数学高二上期末质量检测模拟试题含解析_第4页
北京市西城区第十五中学2023-2024学年数学高二上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市西城区第十五中学2023-2024学年数学高二上期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设实数x,y满足,则目标函数的最大值是()A. B.C.16 D.322.将一颗骰子先后抛掷2次,观察向上的点数,则点数之和是4的倍数但不是3的倍数的概率为()A. B.C. D.3.已知正实数满足,则的最小值为()A. B.9C. D.4.第24届冬季奥林匹克运动会,将在2022年2月4日在中华人民共和国北京市和张家口市联合举行.这是中国历史上第一次举办冬季奥运会,北京成为奥运史上第一个举办夏季奥林匹克运动会和冬季奥林匹克运动会的城市.同时中国也成为第一个实现奥运“全满贯”(先后举办奥运会、残奥会、青奥会、冬奥会、冬残奥会)国家.根据规划,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点和短轴一端点分别向内层椭圆引切线,(如图),且两切线斜率之积等于,则椭圆的离心率为()A. B.C. D.5.设正实数,满足(其中为正常数),若的最大值为3,则()A.3 B.C. D.6.已知等差数列且,则数列的前13项之和为()A.26 B.39C.104 D.527.如图,椭圆的右焦点为,过与轴垂直的直线交椭圆于第一象限的点,点关于坐标原点的对称点为,且,,则椭圆方程为()A. B.C. D.8.在下列函数中,求导错误的是()A., B.,C., D.,9.已知实数,,则下列不等式恒成立的是()A. B.C. D.10.若数列满足,,则该数列的前2021项的乘积是()A. B.C.2 D.111.命题“,”否定形式是()A., B.,C., D.,12.命题“∃x0∈(0,+∞),”的否定是()A.∀x∈(﹣∞,0),2x+sinx≥0B.∀x∈(0,+∞),2x+sinx≥0C.∃x0∈(0,+∞),D.∃x0∈(﹣∞,0),二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,,则___________.14.,若2是与的等比中项,则的最小值为___________.15.若直线l经过A(2,1),B(1,)两点,则l的斜率取值范围为_________________;其倾斜角的取值范围为_________________.16.中国的西气东输工程把西部地区的资源优势变为经济优势,实现了天然气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展.输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为的峡谷拐入宽为的峡谷,如图所示,位于峡谷悬崖壁上两点,的连线恰好经过拐角内侧顶点(点,,在同一水平面内),设与较宽侧峡谷悬崖壁所成的角为,则的长为______(用表示).要使输气管顺利通过拐角,其长度不能低于______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题:“,”,命题:“,”,若“且”为真命题,求实数的取值范围18.(12分)某种机械设备随着使用年限的增加,它的使用功能逐渐减退,使用价值逐年减少,通常把它使用价值逐年减少的“量”换算成费用,称之为“失效费”.某种机械设备的使用年限(单位:年)与失效费(单位:万元)的统计数据如下表所示:使用年限(单位:年)1234567失效费(单位:万元)2.903.303.604.404.805.205.90(1)由上表数据可知,可用线性回归模型拟合与关系.请用相关系数加以说明;(精确到0.01)(2)求出关于的线性回归方程,并估算该种机械设备使用8年的失效费参考公式:相关系数线性回归方程中斜率和截距最小二乘估计计算公式:,参考数据:,,19.(12分)在①,②,③,这三个条件中任选一个,补充在下面的问题中,并解答问题在中,内角A,,的对边分别为,,,且满足______________(1)求;(2)若的面积为,在边上,且,求的最小值注:如果选择多个条件分别解答,按第一个解答计分20.(12分)保护生态环境,提倡环保出行,节约资源和保护环境,某地区从2016年开始大力提倡新能源汽车,每年抽样1000汽车调查,得到新能源汽车y辆与年份代码x年的数据如下表:年份20162017201820192020年份代码第x年12345新能源汽车y辆305070100110(1)建立y关于x的线性回归方程;(2)假设该地区2022年共有30万辆汽车,用样本估计总体来预测该地区2022年有多少新能源汽车参考公式:回归方程斜率和截距的最小二乘估计公式分别为,21.(12分)已知函数.(I)当时,求曲线在处的切线方程;(Ⅱ)若当时,,求的取值范围.22.(10分)双曲线的离心率为,虚轴的长为4.(1)求的值及双曲线的渐近线方程;(2)直线与双曲线相交于互异两点,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求的最大值即求的最大值,根据约束条件画出可行域,将目标函数看成直线,直线经过可行域内的点,将目标与直线的截距建立联系,然后得到何时目标值取得要求的最值,进而求得的最大值,最后求出的最大值.【详解】要求的最大值即求的最大值.根据实数,满足的条件作出可行域,如图.将目标函数化为.则表示直线在轴上的截距的相反数.要求的最大值,即求直线在轴上的截距最小值.如图当直线过点时,在轴上的截距最小值.由,解得所以的最大值为,则的最大值为16.故选:C.2、B【解析】基本事件总数,再利用列举法求出点数之和是4的倍数但不是3的倍数包含的基本事件的个数,由此能求出点数之和是4的倍数但不是3的倍数的概率【详解】解:将一颗骰子先后抛掷2次,观察向上的点数之和,基本事件总数,点数之和是4的倍数但不是3的倍数包含的基本事件有:,,,,,,,,共8个,则点数之和是4的倍数但不是3的倍数的概率为故选:B3、A【解析】根据,将式子化为,进而化简,然后结合基本不等式求得答案.【详解】因为,所以,当且仅当,即时取等号,所以的最小值为.故选:A.4、B【解析】分别设内外层椭圆方程为、,进而设切线、分别为、,联立方程组整理并结合求、关于a、b、m的关系式,再结合已知得到a、b的齐次方程求离心率即可.【详解】若内层椭圆方程为,由离心率相同,可设外层椭圆方程为,∴,设切线为,切线为,∴,整理得,由知:,整理得,同理,,可得,∴,即,故.故选:B.【点睛】关键点点睛:根据内外椭圆的离心率相同设椭圆方程,并写出切线方程,联立方程结合及已知条件,得到椭圆参数的齐次方程求离心率.5、D【解析】由于,,为正数,且,所以利用基本不等式可求出结果【详解】解:因为正实数,满足(其中为正常数),所以,则,所以,所以故选:D.6、A【解析】根据等差数列的性质化简已知条件可得的值,再由等差数列前项和及等差数列的性质即可求解.【详解】由等差数列的性质可得:,,所以由可得:,解得:,所以数列的前13项之和为,故选:A7、C【解析】连结,设,则,,由可求出,进而可求出,得出椭圆方程.【详解】由题意设椭圆的方程:,设左焦点为,连结,由椭圆的对称性易得四边形为平行四边形,由得,又,设,则,,又,解得,又由,,解得,,,则椭圆的方程为.故选:C.【点睛】关键点睛:本题考查了椭圆的标准方程求解及椭圆的简单几何性质,在求解椭圆标准方程时,关键是求解基本量,,.8、B【解析】分别求得每个函数的导数即可判断.详解】;;;.故求导错误的是B.故选:B.9、C【解析】根据不等式性质和作差法判断大小依次判断每个选项得到答案.【详解】当时,不等式不成立,错误;,故错误正确;当时,不等式不成立,错误;故选:.【点睛】本题考查了不等式的性质,作差法判断大小,意在考查学生对于不等式知识的综合应用.10、C【解析】先由数列满足,,计算出前5项,可得,且,再利用周期性即可得到答案.【详解】因为数列满足,,所以,同理可得,…所以数列每四项重复出现,即,且,而,所以该数列的前2021项的乘积是.故选:C.11、C【解析】利用含有一个量词的命题的否定的定义求解.【详解】因为命题“,是特称命题,所以其否定是全称命题,即为,故选:C12、B【解析】利用特称命题的否定是全称命题,写出结果即可【详解】命题“∃x0∈(0,+∞),”的否定是“∀x∈(0,+∞),2x+sinx≥0”故选:B二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】由空间向量数量积的坐标运算可得答案.【详解】因为,,,所以,.故答案为:2.14、3【解析】根据等比中项列方程,结合基本不等式求得的最小值.【详解】由题可得,则,当且仅当时等号成立.故答案为:15、①.②.【解析】根据直线l经过A(2,1),B(1,)两点,利用斜率公式,结合二次函数性质求解;设其倾斜角为,,利用正切函数的性质求解.【详解】因为直线l经过A(2,1),B(1,)两点,所以l的斜率为,所以l的斜率取值范围为,设其倾斜角为,,则,所以其倾斜角的取值范围为,故答案为:,16、①.②.【解析】(1)利用三角关系分别利用表示、即可求解;(2)利用导数求最小值的方法即可求解.【详解】过点分别作,,垂足分别为,,则,在中,,则,同理可得,所以.令,则,令,,得,即,由,解得,当时,;当时,,所以当时,取得极小值,也是最小值,则,故输气管的长度不能低于m.故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、或【解析】先分别求出,为真时,的范围;再求交集,即可得出结果.【详解】若是真命题.则对任意恒成立,∴;若为真命题,则方程有实根,∴,解得或,由题意,真也真,∴或即实数的取值范围是或.18、(1)答案见解析;(2);失效费为6.3万元【解析】(1)根据相关系数公式计算出相关系数可得结果;(2)根据公式求出和可得关于的线性回归方程,再代入可求出结果.【详解】(1)由题意,知,,∴结合参考数据知:因为与的相关系数近似为0.99,所以与的线性相关程度相当大,从而可以用线性回归模型拟合与的关系(2)∵,∴∴关于的线性回归方程为,将代入线性回归方程得万元,∴估算该种机械设备使用8年的失效费为6.3万元19、选择见解析;(1);(2)【解析】(1)选条件①.利用正弦定理边角互化,结合两角和的正弦公式可得,从而可得答案;选条件②.边角互化、切化弦,结合两角和的正弦公式可得,从而得答案;选条件③.边角互化,利用余弦定理可得,从而可得答案;(2)由三角形面积公式可得得,再利用余弦定理与基本不等式可得答案.【详解】(1)方案一:选条件①由可得,由正弦定理得,因为,所以,所以,故,又,于是,即,因为,所以方案二:选条件②因为,所以由正弦定理及同角三角函数的基本关系式,得,即,因为,所以,又,所以,因为,所以方案三:选条件③∵,∴,即,∴,∴又,所以(2)由题意知,得由余弦定理得,当且仅当且,即,时取等号,所以的最小值为20、(1)(2)46800【解析】(1)第一步分别算第x,y的平均值,第二步利用,即可得到方程.(2)由第一问的结果,带入方程即可算出预估的结果.【小问1详解】,,,因为,所以,所以【小问2详解】预测该地区2022年抽样1000汽车调查中新能源汽车数,当时,,该地区2022年共有30万辆汽车,所以新能源汽车.21、(1)(2)【解析】(Ⅰ)先求的定义域,再求,,,由直线方程的点斜式可求曲线在处的切线方程为(Ⅱ)构造新函数,对实数分类讨论,用导数法求解.试题解析:(I)定义域为.当时,,曲线在处的切线方程为(II)当时,等价于设,则,(i)当,时,,故在上单调递增,因此;(ii)当时,令得.由和得,故当时,,在单调递减,因此.综上,的取值范围是【考点】导数的几何意义,利用导数判断函数的单调性【名师点睛】求函数的单调区间的方法:(1)确定函数y=f(x)定义域;(2)求导数y′=f′(x);(3)解不等式f′(x)>0,解集在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论