版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市西城区第十四中2023-2024学年高二上数学期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的单调递减区间是()A. B.C. D.2.中国明代商人程大位对文学和数学颇感兴趣,他于60岁时完成杰作《直指算法统宗》.这是一本风行东亚的数学名著,该书A.76石 B.77石C.78石 D.79石3.已知函数.设命题的定义域为,命题的值域为.若为真,为假,则实数的取值范围是()A. B.C. D.4.已知数列中,,则()A. B.C. D.5.函数的值域为()A. B.C. D.6.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B.C. D.7.已知双曲线的左、右焦点分别为,,为坐标原点,为双曲线在第一象限上的点,直线,分别交双曲线的左,右支于另一点,,若,且,则双曲线的离心率为()A. B.3C.2 D.8.数列满足,,,则数列的前10项和为()A.60 B.61C.62 D.639.圆心在x轴上且过点的圆与y轴相切,则该圆的方程是()A. B.C. D.10.已知奇函数是定义在R上的可导函数,的导函数为,当时,有,则不等式的解集为()A. B.C. D.11.高中生在假期参加志愿者活动,既能服务社会又能锻炼能力.某同学计划在福利院、社区、图书馆和医院中任选两个单位参加志愿者活动,则参加图书馆活动的概率为()A. B.C. D.12.已知向量,,且,则值是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点,点是直线上的动点,则的最小值是_____________14.已知O为坐标原点,,是抛物线上的两点,且满足,则______;若OM垂直AB于点M,且为定值,则点Q的坐标为__________.15.已知球面上的三点A,B,C满足,,,球心到平面ABC的距离为,则球的表面积为______16.如图将自然数,…按到箭头所指方向排列,并依次在,…等处的位置拐弯.如图作为第一次拐弯,则第33次拐弯的数是___________,超过2021的第一个拐弯数是____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱中,点在底面内的射影恰好是点,是的中点,且满足(1)求证:平面;(2)已知,直线与底面所成角的大小为,求二面角的大小18.(12分)若数列的前n项和满足,(1)求的通项公式;(2)设,求数列的前n项和19.(12分)已知函数.(1)求的单调递减区间;(2)在锐角中,,,分别为角,,的对边,且满足,求的取值范围.20.(12分)已知函数,在处有极值.(1)求、的值;(2)若,有个不同实根,求的范围.21.(12分)已知等差数列}的公差为整数,为其前n项和,,(1)求{}的通项公式:(2)设,数列的前n项和为,求22.(10分)已知是等差数列,,.(1)求的通项公式;(2)设的前项和,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】求导后,利用求得函数的单调递减区间.【详解】解:,则,由得,故选:D.2、C【解析】设出未知数,列出方程组,求出答案.【详解】设甲、乙、丙分得的米数为x+d,x,x-d,则,解得:d=18,,解得:x=60,所以x+d=60+18=78(石)故选:C3、C【解析】根据一元二次不等式恒成立和二次函数值域可求得为真命题时的取值范围,根据和的真假性可知一真一假,分类讨论可得结果.【详解】若命题为真,则在上恒成立,,;若命题为真,则的值域包含,则或,;为真,为假,一真一假,若真假,则;若假真,则;综上所述:实数的取值范围为.故选:C.4、D【解析】由数列的递推公式依次去求,直到求出即可.【详解】由,可得,,,故选:D.5、C【解析】根据基本不等式即可求出【详解】因为,当且仅当时取等号,所以函数的值域为故选:C6、A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题7、D【解析】由双曲线的定义可设,,由平面几何知识可得四边形为平行四边形,三角形,用余弦定理,可得,的方程,再由离心率公式可得所求值【详解】由双曲线的定义可得,由,可得,,结合双曲线性质可以得到,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故,对三角形,用余弦定理,得到,结合,可得,,,代入上式子中,得到,即,结合离心率满足,即可得出,故选:D【点睛】本题考查求双曲线的离心率,熟记双曲线的简单性质即可,属于常考题型.8、B【解析】讨论奇偶性,应用等差、等比前n项和公式对作分组求和即可.【详解】当且为奇数时,,则,当且为偶数时,,则,∴.故选:B.9、A【解析】根据题意设出圆的方程,列式即可求出【详解】依题可设圆的方程为,所以,解得即圆的方程是故选:A10、B【解析】根据给定的不等式构造函数,再探讨函数的性质,借助性质解不等式作答.【详解】依题意,令,因是R上的奇函数,则,即是R上的奇函数,当时,,则有在单调递增,又函数在R上连续,因此,函数在R上单调递增,不等式,于是得,解得,所以原不等式的解集是.故选:B11、D【解析】对4个单位分别编号,利用列举法求出概率作答.【详解】记福利院、社区、图书馆和医院分别为A,B,C,D,从4个单位中任选两个的试验有AB,AC,AD,BC,BD,CD,共6个基本事件,它们等可能,其中有参加图书馆活动的事件有AC,BC,CD,共3个基本事件,所以参加图书馆活动的概率.故选:D12、A【解析】求出向量,的坐标,利用向量数量积坐标表示即可求解.【详解】因为向量,,所以,,因为,所以,解得:,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】直接根据点到直线的距离公式即可求出【详解】线段最短时,与直线垂直,所以,的最小值即为点到直线的距离,则.故答案为:.14、①.-24②.【解析】由抛物线的方程及数量积的运算可求出,设直线AB的方程为,联立抛物线方程,由根与系数的关系可求出,由圆的定义求出圆心即可.【详解】由,即解得或(舍去).设直线AB的方程为.由,消去x并整理得,.又,,直线AB恒过定点N(6,0),OM垂直AB于点M,点M在以ON为直径圆上.|MQ|为定值,点Q为该圆的圆心,又即Q(3,0).故答案为:;15、【解析】由题意可知为直角三角形,求出外接圆的半径,可求出球的半径,然后求球的表面积.【详解】由题意,,,,则,可知,所以外接圆的半径为,因为球心到平面的距离为,所以球的半径为:,所以球的表面积为:.故答案为:.16、①.②.【解析】根据题意得到拐弯处的数字与其序数的关系,归纳得到当为奇数为;当为为偶数为,分别代入,即可求解.【详解】解:由题意,拐弯处的数字与其序数的关系,如下表:拐弯的序数012345678拐弯处的数1235710131721观察拐弯处的数字的规律:第1个数;第3个数;第5个数;第7个数;,所以当为奇数为;同理可得:当为为偶数为;第33次拐弯的数是,当时,可得,当时,可得,所以超过2021第一个拐弯数是.故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)分别证明出和,利用线面垂直的判定定理即可证明;(2)以C为原点,为x、y、z轴正方向建立空间直角坐标系,用向量法求二面角的平面角.【小问1详解】因为点在底面内的射影恰好是点,所以面.因为面,所以.因为是的中点,且满足.所以,所以.因为,所以,即,所以.因为,面,面,所以平面.【小问2详解】∵面,∴直线与底面所成角为,即.因为,所以由(1)知,,因,所以,.如图示,以C为原点,为x、y、z轴正方向建立空间直角坐标系.则,,,,所以,设,由得,,即.则.设平面BDC1的一个法向量为,则,不妨令,则.因为面,所以面的一个法向量为记二面角的平面角为,由图知,为锐角.所以,即.所以二面角的大小为.18、(1)(2)【解析】(1)根据递推关系结合等比数列的定义可求解;(2)根据(1)化简,利用裂项相消法求出数列的前n项和.小问1详解】当时,,所以,即,当时,,得,则所以数列是首项为﹣1,公比为3的等比数列所以【小问2详解】由(1)得:所以,所以19、(1)(2)【解析】(1)根据降幂公式化简的解析式,再用整体代入法即可求出函数的单调递减区间;(2)由正弦定理边化角,从而可求得,根据锐角三角形可得从而可求出答案【详解】解:(1),由得所以的单调递减区间为;(2)由正弦定理得,∵∴,即,,得,或,解得,或(舍),∵为锐角三角形,∴解得∴∴的取值范围为【点睛】本题主要考查三角函数的化简与性质,考查正弦定理的作用,属于基础题20、(1),(2)【解析】(1)根据题设条件可得,由此可解得与的值(2)依题意可知直线与函数的图象有三个不同的交点,则的取值范围介于极小值与极大值之间.【小问1详解】因为函数,在处有极值,所以,即,解得,.【小问2详解】由(1)知,,所以在上,,单调递增,在上,,单调递减,在上,,单调递增,所以,,若有3个不同实根,则,所以的取值范围为.21、(1)(2)【解析】(1)根据题意利用等差数列的性质列出方程,即可解得答案;(2)根据(1)的结果,求出的表达式,利用裂项求和的方法求得答案.小问1详解】设等差数列{}的公差为d,则,整理可得:,∵d是整数,解得,从而,所以数列{}的通项公式为:;【小问2详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学安全守护者聘用合同
- 人才梯队发展规划制定
- 2025版知识产权质押借款合同公证与风险防控方案2篇
- 2024年版湖州电商客服系统外包服务合同
- 2024年特定品牌医疗设备购买合同版
- 2025年度安全生产技术服务平台开发合同2篇
- 2025年度医疗健康合资企业成立合同样本3篇
- 2024年环境治理工程承揽合同示范文本3篇
- 2024年物流设施租赁合同3篇
- 广州2024年广东广州番禺区中医院招聘编外人员笔试历年典型考点(频考版试卷)附带答案详解
- 洛阳白马寺景点介绍中文及英文
- 材料工程基础(山东联盟)智慧树知到答案章节测试2023年烟台大学
- 销售破冰话术
- 陕西省工程竣工验收备案表
- 酒店预订系统
- 2023-2024学年河北省秦皇岛市小学数学五年级上册期末高分通关考试题
- 2023年银行安全保卫知识考试题库(含答案)
- YB/T 4090-2000超高功率石墨电极
- GB/T 39194-2020真空低压渗碳高压气淬热处理技术要求
- 《厨房里的物质与变化》实验记录单
- 公司级新员工安全培训课件
评论
0/150
提交评论