![安徽省庐巢六校联盟2023-2024学年高二数学第一学期期末学业水平测试试题含解析_第1页](http://file4.renrendoc.com/view/e0630d5c22b278d186e5956204db44a4/e0630d5c22b278d186e5956204db44a41.gif)
![安徽省庐巢六校联盟2023-2024学年高二数学第一学期期末学业水平测试试题含解析_第2页](http://file4.renrendoc.com/view/e0630d5c22b278d186e5956204db44a4/e0630d5c22b278d186e5956204db44a42.gif)
![安徽省庐巢六校联盟2023-2024学年高二数学第一学期期末学业水平测试试题含解析_第3页](http://file4.renrendoc.com/view/e0630d5c22b278d186e5956204db44a4/e0630d5c22b278d186e5956204db44a43.gif)
![安徽省庐巢六校联盟2023-2024学年高二数学第一学期期末学业水平测试试题含解析_第4页](http://file4.renrendoc.com/view/e0630d5c22b278d186e5956204db44a4/e0630d5c22b278d186e5956204db44a44.gif)
![安徽省庐巢六校联盟2023-2024学年高二数学第一学期期末学业水平测试试题含解析_第5页](http://file4.renrendoc.com/view/e0630d5c22b278d186e5956204db44a4/e0630d5c22b278d186e5956204db44a45.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省庐巢六校联盟2023-2024学年高二数学第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过抛物线的焦点的直线交抛物线于两点,点是原点,若;则的面积为()A. B.C. D.2.在中,角A,B,C的对边分别为a,b,c,若,且,则为()A.等腰三角形 B.直角三角形C.锐角三角形 D.钝角三角形3.设为抛物线焦点,直线,点为上任意一点,过点作于,则()A.3 B.4C.2 D.不能确定4.已知抛物线,过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的横坐标为3,则该抛物线的准线方程为()A. B.C. D.5.已知点是抛物线上的一点,F是抛物线的焦点,则点M到F的距离等于()A.6 B.5C.4 D.26.设,则有()A. B.C. D.7.已知抛物线的焦点与椭圆的右焦点重合,则抛物线的准线方程为()A. B.C. D.8.圆与直线的位置关系是()A.相交 B.相切C.相离 D.不能确定9.是等差数列,且,,则的值()A. B.C. D.10.已知数列中,且满足,则()A.2 B.﹣1C. D.11.有6本不同的书,按下列方式进行分配,其中分配种数正确的是()A.分给甲、乙、丙三人,每人各2本,有15种分法;B.分给甲、乙、丙三人中,一人4本,另两人各1本,有180种分法;C.分给甲乙每人各2本,分给丙丁每人各1本,共有90种分法;D.分给甲乙丙丁四人,有两人各2本,另两人各1本,有1080种分法;12.一物体做直线运动,其位移(单位:)与时间(单位:)的关系是,则该物体在时的瞬时速度是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若直线的方向向量为,平面的一个法向量为,则直线与平面所成角的正弦值为______.14.在中.若成公比为的等比数列,则____________15.已知函数,则曲线在点处的切线方程为___________16.根据某市有关统计公报显示,随着“一带一路”经贸合作持续深化,该市对外贸易近几年持续繁荣,2017年至2020年每年进口总额(单位:千亿元)和出口总额(单位:千亿元)之间的一组数据如下:2017年2018年2019年2020年若每年的进出口总额,满足线性相关关系,则______;若计划2022年出口总额达到千亿元,预计该年进口总额为______亿元三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,PA=2AD=4,且PC=.点E在PC上.(1)求证:平面BDE⊥平面PAC;(2)若E为PC的中点,求直线PC与平面AED所成的角的正弦值.18.(12分)在等差数列中,,(1)求的通项公式;(2)设,求数列的前项和19.(12分)如图,在平面直角坐标系xOy中,已知抛物线C:y2=4x的焦点为F,准线为l,过点F且斜率大于0的直线交抛物线C于A,B两点(其中A在B的上方),过线段AB的中点M且与x轴平行的直线依次交直线OA、OB,l于点P、Q、N(1)试探索PM与NQ长度的大小关系,并证明你的结论;(2)当P、Q是线段MN的三等分点时,求直线AB的斜率;(3)当P、Q不是线段MN的三等分点时,证明:以点Q为圆心、线段QO长为半径的圆Q不可能包围线段NP20.(12分)如图,在四棱锥中,底面为直角梯形,平面平面,,.(1)证明:平面;(2)已知,,,且直线与平面所成角的正弦值为,求平面与平面夹角的余弦值.21.(12分)如图1,在△MBC中,,A,D分别为棱BM,MC的中点,将△MAD沿AD折起到△PAD的位置,使,如图2,连结PB,PC,BD(1)求证:平面PAD⊥平面ABCD;(2)若E为PC中点,求直线DE与平面PBD所成角的正弦值22.(10分)已知抛物线的焦点F到准线的距离为2(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足,求直线斜率最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】抛物线焦点为,准线方程为,由得或所以,故答案为C考点:1、抛物线的定义;2、直线与抛物线的位置关系2、B【解析】由余弦定理可得,再利用可得答案.【详解】因为,所以,由余弦定理,因为,所以,又,∴,故为直角三角形.故选:B.3、A【解析】由抛物线方程求出准线方程,由题意可得,由抛物线的定义可得,即可求解.【详解】由可得,准线为,设,由抛物线的定义可得,因为过点作于,可得,所以,故选:A.4、B【解析】设,进而根据题意,结合中点弦的问题得,进而再求解准线方程即可.【详解】解:根据题意,设,所以①,②,所以,①②得:,即,因为直线AB的斜率为1,线段AB的中点的横坐标为3,所以,即,所以抛物线,准线方程为.故选:B5、B【解析】先求出,再利用焦半径公式即可获解.【详解】由题意,,解得所以故选:B.6、A【解析】利用作差法计算与比较大小即可求解.【详解】因为,,所以,所以,故选:A.7、C【解析】先求出椭圆的右焦点,从而可求抛物线的准线方程.【详解】,椭圆右焦点坐标为,故抛物线的准线方程为,故选:C.【点睛】本题考查抛物线的几何性质,一般地,如果抛物线的方程为,则抛物线的焦点的坐标为,准线方程为,本题属于基础题.8、B【解析】用圆心到直线的距离与半径的大小判断【详解】解:圆的圆心到直线的距离,等于圆的半径,所以圆与直线相切,故选:B9、B【解析】根据等差数列的性质计算【详解】因为是等差数列,所以,,也成等差数列,所以故选:B10、C【解析】首先根据数列的递推公式求出数列的前几项,即可得到数列的周期性,即可得解;【详解】解:因为且,所以,,,所以是周期为的周期数列,所以,故选:C11、D【解析】根据题意,分别按照选项说法列式计算验证即可做出判断.【详解】选项A,6本不同的书分给甲、乙、丙三人,每人各2本,有种分配方法,故该选项错误;选项B,6本不同的书分给甲、乙、丙三人,一人4本,另两人各1本,先将6本书分成4-1-1的3组,再将三组分给甲乙丙三人,有种分配方法,故该选项错误;选项C,6本不同的书分给甲乙每人各2本,有种方法,其余分给丙丁每人各1本,有种方法,所以不同的分配方法有种,故该选项错误;选项D,先将6本书分为2-2-1-14组,再将4组分给甲乙丙丁4人,有种方法,故该选项正确.故选:D.12、A【解析】先对求导,然后将代入导数式,可得出该物体在时的瞬时速度【详解】对求导,得,,因此,该物体在时的瞬时速度为,故选A【点睛】本题考查瞬时速度的概念,考查导数与瞬时变化率之间的关系,考查计算能力,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据空间向量夹角公式进行求解即可.【详解】设与的夹角为,直线与平面所成角为,所以,故答案为:14、【解析】由条件可得,即,由余弦定理可得答案.【详解】由成公比为的等比数列,即由正弦定理可知所以故答案为:15、【解析】根据导数的几何意义求出切线的斜率,利用点斜式求切线方程.【详解】解:因,所以,又故切线方程为,整理为,故答案为:16、①.1.6②.3.65千##3650【解析】根据给定数表求出样本中心点,代入即可求得,取可求出该年进口总额.【详解】由数表得:,,因此,回归直线过点,由,解得,此时,,当时,即,解得,所以,预计该年进口总额为千亿元.故答案为:1.6;3.65千三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】(1)根据题意可判断出ABCD是正方形,从而可得,再根据,由线面垂直的判定定理可得平面PAC,然后由面面垂直的判定定理即可证出;(2)由、、两两垂直可建立空间直角坐标系,利用向量法即可求出直线PC与平面AED所成的角的正弦值.【小问1详解】因为PA⊥底面ABCD,PA=2AD=4,PC=,所以,,即ABCD是正方形,所以,而PA⊥底面ABCD,所以,又,所以平面PAC,而平面BDE,所以平面BDE⊥平面PAC【小问2详解】由题可知、、两两垂直,建系如图,,0,,,2,,,0,,,2,,,1,,,,,,1,,,2,,设平面的一个法向量为,则,,即,取,0,,所以直线与平面所成的角的正弦值为18、(1);(2).【解析】(1)根据等差数列的通项公式求解;(2)运用裂项相消法求数列的和.详解】(1)∵,∴,即∴(2)由(1)可得,即.利用累加法得【点睛】本题考查等差数列的通项公式和裂项相消法求数列的和.19、(1),证明见解析(2)(3)证明见解析【解析】(1)根据已知条件设出直线方程及,与抛物线的方程联立,利用韦达定理和中点坐标公式,三点共线的性质即可求解;(2)根据已知条件得出,运用韦达定理和弦长公式,可得出直线的斜率;(3)根据(1)的结论及求根公式,求得点的坐标,结合的表达式,结合图形可知,由的范围和的取值即可证明.【小问1详解】由题意可知,抛物线的焦点为,设直线的方程为,则,消去,得,,,所以直线的方程为,由因为三点共线,所以,,同理,,,所以,所以.【小问2详解】因为P、Q是线段MN的三等分点,所以,,,又,,所以,所以,解得或(舍)所以直线AB的斜率为.【小问3详解】由(1)知,,得,所以,,又,,,,当时,,由图可知,,而只要,就有,所以当P、Q不是线段MN的三等分点时,以点Q为圆心、线段QO长为半径的圆Q不可能包围线段NP20、(1)证明过程见解析;(2).【解析】(1)利用平面与平面垂直的性质得出直线与平面垂直,进而得出平面;(2)建立空间直角坐标系即可求解.【小问1详解】证明:因为平面平面,交线为且平面中,所以平面又平面所以又,且所以平面【小问2详解】解:由(1)知,平面且所以、、两两垂直因此以原点,建立如图所示的空间直角坐标系因为,,,设所以,,,,由(1)知,平面所以为平面的法向量且因为直线与平面所成角的正弦值为所以解得:所以,又,,所以,,,设平面与平面的法向量分别为:,所以,令,则令,则,,即设平面与平面夹角为则所以平面与平面夹角的余弦值为.21、(1)证明见解析;(2).【解析】(1)推导出,,利用线面垂直的判定定理可得平面,再利用面面垂直的判定定理即可证明;(2)以A为坐标原点,建立如图空间直角坐标系,利用向量法即可求出直线DE与平面所成角的正弦值.【小问1详解】由题意知,因为点A、D分别为MB、MC中点,所以,又,所以,所以.因为,所以,又,所以平面,又平面,所以平面平面;【小问2详解】因为,,,所以两两垂直,以A为坐标原点,建立如图空间直角坐标系,,则,设平面的一个法向量为,则,令,得,所以,设直线DE与平面所成角为,则,所以直线DE与平面所成角的正弦值为.22、(1);(2)最大值为.【解析】(1)由抛物线焦点与准线的距离即可得解;(2)设,由平面向量的知识可得,进而可得,再由斜率公式及基本不等式即可得解.【详解】(1)抛物线的焦点,准线方程为,由题意,该抛物线焦点到准线的距离为,所以该抛物线的方程为;(2)[方法一]:轨迹方程+基本不等式法设,则,所以,由在抛物线上可得,即,所以直线的斜率,当时,;当时,,当时,因为,此时,当且仅当,即时,等号成立;当时,;综上,直线斜率的最大值为.[方法二]:【最优解】轨迹方程+数形结合法同方法一得到点Q的轨迹方程为设直线的方程为,则当直线与抛物线相切时,其斜率k取到最值.联立得,其判别式,解得,所以直线斜率的最大值为[方法三]:轨迹方程+换元求最值法同方法一得点Q的轨迹方程为设直线的斜率为k,则令,则的对称轴为,所以.故直线斜率的最大值为[方法四]参数+基本不等式法由题可设因,所以于是,所以则直线的斜率为当且仅当,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年甲基环状硅氧烷项目可行性研究报告
- 现代企业网络安全培训与教育
- 中国汽车隔音棉行业发展监测及投资战略规划研究报告
- 2020-2025年中国商用洗碗机行业发展趋势预测及投资规划研究报告
- 如何写贫困补助申请书
- 生产流程优化高效率的生产秘诀
- 电子竞技产业的办公文化与团队建设
- 2025年铁叶轮项目投资可行性研究分析报告
- 2025年切换电音器接触器项目可行性研究报告
- 知识产权助力旅游文化的商业价值挖掘
- 教师师德专题培训
- 2024年湖南生物机电职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 成都市2024-2025学年度上期期末高一期末语文试卷(含答案)
- 2025年教育局财务工作计划
- 教科版四年级下册科学科学教案+教材分析
- 广东2024年广东金融学院招聘工作人员10人笔试历年典型考点(频考版试卷)附带答案详解
- T-WSJD 18.22-2024 工作场所空气中化学因素测定 双氯甲醚的便携式气相色谱-质谱法
- 北京市东城区2023-2024学年高二下学期期末英语试题 含解析
- 中国食物成分表2020年权威完整改进版
- 各施工阶段安全管理的重点及安全保证措施
- 2024年金属非金属矿山(地下矿山)安全管理人员考试练习题(100题)附答案
评论
0/150
提交评论