2024届云南省文山州砚山二中高二上数学期末联考模拟试题含解析_第1页
2024届云南省文山州砚山二中高二上数学期末联考模拟试题含解析_第2页
2024届云南省文山州砚山二中高二上数学期末联考模拟试题含解析_第3页
2024届云南省文山州砚山二中高二上数学期末联考模拟试题含解析_第4页
2024届云南省文山州砚山二中高二上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省文山州砚山二中高二上数学期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“,”的否定是A, B.,C., D.,2.用数学归纳法证明时,第一步应验证不等式()A. B.C. D.3.用反证法证明命题“a,b∈N,如果ab可以被5整除,那么a,b至少有1个能被5整除.”假设内容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a不能被5整除 D.a,b有1个不能被5整除4.定义在区间上的函数满足:对恒成立,其中为的导函数,则A.B.C.D.5.记Sn为等差数列{an}的前n项和,给出下列4个条件:①a1=1;②a4=4;③S3=9;④S5=25,若只有一个条件不成立,则该条件为()A.① B.②C.③ D.④6.已知四面体中,,若该四面体的外接球的球心为,则的面积为()A. B.C. D.7.函数的图像在点处的切线方程为()A. B.C. D.8.已知等差数列的前项和为,,,当取最大时的值为()A. B.C. D.9.如图,A,B,C三点不共线,O为平面ABC外一点,且平面ABC中的小方格均为单位正方形,,,则()A.1 B.C.2 D.10.设变量,满足约束条件则的最小值为()A.3 B.-3C.2 D.-211.如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()A.B.C.D.12.已知点为双曲线的左顶点,点和点在双曲线的右分支上,是等边三角形,则的面积是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列中,,且数列为等差数列,则_____________.14.对于实数表示不超过的最大整数,如.已知数列的通项公式,前项和为,则___________.15.i为虚数单位,复数______16.有一组数据:,其平均数是,则其方差是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在棱长为的正方体中,、分别为线段、的中点.(1)求平面与平面所成锐二面角的余弦值;(2)求直线到平面的距离.18.(12分)在中,其顶点坐标为.(1)求直线的方程;(2)求的面积.19.(12分)已知数列的首项,其前n项和为,且满足.(1)求数列的通项公式;(2)设,数列的前n项和为,且,求n.20.(12分)已知直线过点,且被两条平行直线,截得的线段长为.(1)求的最小值;(2)当直线与轴平行时,求的值.21.(12分)已知在等差数列中,,(1)求的通项公式;(2)若,求数列的前项和22.(10分)已知椭圆的离心率为,右焦点到上顶点的距离为.(1)求椭圆的方程;(2)斜率为2的直线经过椭圆的左焦点,且与椭圆相交于两点,求的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】特称命题的否定是全称命题,并将结论加以否定,所以命题的否定为:,考点:全称命题与特称命题2、B【解析】取即可得到第一步应验证不等式.【详解】由题意得,当时,不等式为故选:B3、B【解析】由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”考点:反证法4、D【解析】分别构造函数,,,,利用导数研究其单调性即可得出【详解】令,,,,恒成立,,,,函数在上单调递增,,令,,,,恒成立,,函数在上单调递减,,.综上可得:,故选:D【点睛】函数的性质是高考的重点内容,本题考查的是利用函数的单调性比较大小的问题,通过题目中给定的不等式,分别构造两个不同的函数求导判出单调性从而比较函数值得大小关系.在讨论函数的性质时,必须坚持定义域优先的原则.对于函数实际应用问题,注意挖掘隐含在实际中的条件,避免忽略实际意义对定义域的影响5、B【解析】根据等差数列通项公式及求和公式的基本量计算,对比即可得出结果.【详解】设等差数列{an}的公差为,,,,即,即.当,时,①③④均成立,②不成立.故选:B6、C【解析】根据四面体的性质,结合线面垂直的判定定理、球的性质、正弦定理进行求解即可.【详解】由图设点为中点,连接,由,所以,面,则面,且,所以球心面,所以平面与球面的截面为大圆,延长线与此大圆交于点.在三角形中,由,所以,由正弦定理知:三角形的外接圆半径为,设三角形的外接圆圆心为点,则面,有,则,设的外接圆圆心为点,则面,由正弦定理知:三角形PAB的外接圆半径为,所以,又三角形中,,所以为的角平分线,则,在直角三角形OMD中,,在直角三角形OED中,,在三角形中,取中点,由,所以,故选:C.【点睛】关键点睛:运用正弦定理、勾股定理、线面垂直的判定定理是解题的关键.7、B【解析】求得函数的导数,计算出和的值,可得出所求切线的点斜式方程,化简即可.详解】,,,,因此,所求切线的方程为,即.故选:B.【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题8、B【解析】由已知条件及等差数列通项公式、前n项和公式求基本量,再根据等差数列前n项和的函数性质判断取最大时的值.【详解】令公差为,则,解得,所以,当时,取最大值.故选:B9、B【解析】根据向量的线性运算,将向量表示为,再根据向量的数量积的运算进行计算可得答案,【详解】因为,所以=,故选:B.10、D【解析】转化为,则最小即直线在轴上的截距最大,作出不等式组表示的可行域,数形结合即得解【详解】转化为,则最小即直线在轴上的截距最大作出不等式组表示的可行域如图中阴影部分所示,作出直线,平移该直线,当直线经过时,在轴上的截距最大,最小,此时,故选:D11、D【解析】由题设,“需要一段环湖弯曲路段与两条直道平滑连接(相切)“可得出此两点处的切线正是两条直道所在直线,由此规律验证四个选项即可得出答案【详解】由函数图象知,此三次函数在上处与直线相切,在点处与相切,下研究四个选项中函数在两点处的切线A:,将0代入,此时导数为,与点处切线斜率为矛盾,故A错误B:,将0代入,此时导数为,不为,故B错误;C:,将2代入,此时导数为,与点处切线斜率为3矛盾,故C错误;D:,将0,2代入,解得此时切线的斜率分别是,3,符合题意,故D正确;故选:D.12、C【解析】设点在轴上方,由是等边三角形得直线斜率.又直线过点,故方程为.代入双曲线方程,得点的坐标为.同理可得,点的坐标为.故的面积为,选C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意得:考点:等差数列通项14、54【解析】由,利用裂项相消法求得,再由的定义求解.【详解】由已知可得:,,当时,,;当时,,;当时,,;当时,,;当时,;;所以.故答案为:54.15、【解析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简求解即可.【详解】故答案为:.16、2【解析】先按照平均数算出a,再按照方差的定义计算即可。【详解】∵,所以,方差,故答案为:2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得平面与平面所成锐二面角的余弦值;(2)证明出平面,利用空间向量法可求得直线到平面的距离.【小问1详解】解:以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,则、、、、,设平面的法向量为,,,由,取,可得,易知平面的一个法向量为,,因此,平面与平面所成锐二面角的余弦值为.【小问2详解】解:,则,所以,,因为平面,所以,平面,,所以,直线到平面的距离为.18、(1)(2)【解析】(1)先求出AB的斜率,再利用点斜式写出方程即可;(2)先求出,再求出C到AB的距离即可得到答案.【小问1详解】由已知,,所以直线的方程为,即.【小问2详解】,C到直线AB的距离为,所以的面积为.19、(1)(2)【解析】(1)由条件得,则利用等差数列的定义可得答案;(2)利用裂项求和求出,再根据可求出n.【小问1详解】由得,从而数列是以1为首项,1为公差的等差数列,所以;【小问2详解】由(1)得,由得又,所以.20、(1)3;(2)5【解析】(1)由题可得和的距离即为的最小值;(2)可得此时直线的方程为,求出交点坐标即可求出距离.【详解】(1)由题可得当且时,取得最小值,即和的距离,由两平行线间的距离公式,得,所以的最小值为3.(2)当直线与轴平行时,方程为,设直线与直线,分别交于点,,则,,所以,即,所以.21、(1)(2)【解析】(1)设的公差为,由等差数列的通项公式结合条件可得答案.(2)由(1)可得,由错位相减法可得答案.【小问1详解】设的公差为,由已知得且,解得,,所以的通项公式为【小问2详解】由(1)可得,所以,所以,两式相减得:,所以,所以22、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论