2024届云南省数学高二上期末经典试题含解析_第1页
2024届云南省数学高二上期末经典试题含解析_第2页
2024届云南省数学高二上期末经典试题含解析_第3页
2024届云南省数学高二上期末经典试题含解析_第4页
2024届云南省数学高二上期末经典试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省数学高二上期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知公差为的等差数列满足,则()A B.C. D.2.已知关于的不等式的解集是,则的值是()A B.5C. D.73.椭圆的焦点为、,上顶点为,若,则()A B.C. D.4.下列关于抛物线的图象描述正确的是()A.开口向上,焦点为 B.开口向右,焦点为C.开口向上,焦点为 D.开口向右,焦点为5.若公差不为0的等差数列的前n项和是,,且,,为等比数列,则使成立的最大n是()A.6 B.10C.11 D.126.已知双曲线(,)的左、右焦点分别为,,.若双曲线M的右支上存在点P,使,则双曲线M的离心率的取值范围为()A. B.C. D.7.球O为三棱锥的外接球,和都是边长为的正三角形,平面PBC平面ABC,则球的表面积为()A. B.C. D.8.阿基米德不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积公式,设椭圆的长半轴长、短半轴长分别为,则椭圆的面积公式为,若椭圆的离心率为,面积为,则椭圆的标准方程为()A.或 B.或C.或 D.或9.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.10.已知直线l和抛物线交于A,B两点,O为坐标原点,且,交AB于点D,点D的坐标为,则p的值为()A. B.1C. D.211.已知随机变量服从正态分布,且,则()A.0.1 B.0.2C.0.3 D.0.412.在平面几何中,将完全覆盖某平面图形且直径最小的圆,称为该平面图形的最小覆盖圆.如线段的最小覆盖圆就是以该线段为直径的圆,锐角三角形的最小覆盖圆就是该三角形的外接圆.若,,,则的最小覆盖圆的半径为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过抛物线的焦点的直线交抛物线于点、,且点的横坐标为,过点和抛物线顶点的直线交抛物线的准线于点,则的面积为___________.14.复数的实部为_________15.已知双曲线的右焦点为F,以F为圆心,以a为半径的圆与双曲线C的一条渐近线交于A,B两点.若(O为坐标原点),则双曲线C的离心率为___________.16.如图,在三棱锥中,,二面角的余弦值为,若三棱锥的体积为,则三棱锥外接球的表面积为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的中心在原点,对称轴为坐标轴且焦点在轴上,抛物线:,若抛物线的焦点在椭圆上,且椭圆的离心率为.(1)求椭圆的方程;(2)已知斜率存在且不为零的直线满足:与椭圆相交于不同两点、,与直线相交于点.若椭圆上一动点满足:,,且存在点,使得恒为定值,求的值.18.(12分)已知等差数列满足;正项等比数列满足,,(1)求数列,的通项公式;(2)数列满足,的前n项和为,求的最大值.19.(12分)已知双曲线,直线l与交于P、Q两点(1)若点是双曲线的一个焦点,求的渐近线方程;(2)若点P的坐标为,直线l的斜率等于1,且,求双曲线的离心率20.(12分)近年来,我国电子商务蓬勃发展.2016年“618”期间,某网购平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统.从该评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务都满意的交易为80次.(1)根据已知条件完成下面的列联表,并回答能否有的把握认为“网购者对商品满意与对服务满意之间有关系”?对服务满意对服务不满意合计对商品满意80对商品不满意10合计200(2)若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务都满意的次数为随机变量,求的分布列和数学期望.临界值表:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.89710.828的观测值:(其中).21.(12分)在平面直角坐标系中,已知抛物线的焦点与椭圆的右焦点重合(1)求椭圆的离心率;(2)求抛物线的方程;(3)设是抛物线上一点,且,求点的坐标22.(10分)已知圆C过两点,,且圆心C在直线上(1)求圆C的方程;(2)过点作圆C的切线,求切线方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据等差数列前n项和,即可得到答案.【详解】∵数列是公差为的等差数列,∴,∴.故选:C2、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D3、C【解析】分析出为等边三角形,可得出,进而可得出关于的等式,即可解得的值.【详解】在椭圆中,,,,如下图所示:因为椭圆的上顶点为点,焦点为、,所以,,为等边三角形,则,即,因此,.故选:C.4、A【解析】把化成抛物线标准方程,依据抛物线几何性质看开口方向,求其焦点坐标即可解决.【详解】,即.则,即故此抛物线开口向上,焦点为故选:A5、C【解析】设等差数列的公差为d,根据,且,,为等比数列,求得首项和公差,再利用前n项和公式求解.【详解】设等差数列的公差为d,因为,且,,为等比数列,所以,解得或(舍去),则,所以,解得,所以使成立的最大n是11,故选:C6、A【解析】利用三角形正弦定理结合,用a,c表示出,再由点P的位置列出不等式求解即得.【详解】依题意,点P不与双曲线顶点重合,在中,由正弦定理得:,因,于是得,而点P在双曲线M的右支上,即,从而有,点P在双曲线M的右支上运动,并且异于顶点,于是有,因此,,而,整理得,即,解得,又,故有,所以双曲线M的离心率的取值范围为.故选:A7、B【解析】取中点为T,以及的外心为,的外心为,依据平面平面可知为正方形,然后计算外接球半径,最后根据球表面积公式计算.【详解】设中点为T,的外心为,的外心为,如图由和均为边长为的正三角形则和的外接圆半径为,又因为平面PBC平面ABC,所以平面,可知且,过分别作平面、平面的垂线相交于点即为三棱锥的外接球的球心,且四边形是边长为的正方形,所以外接球半径,则球的表面积为,故选:B8、B【解析】根据题意列出的关系式,即可求得,再分焦点在轴与轴两种情况写出标准方程.【详解】根据题意,可得,所以椭圆的标准方程为或.故选:B9、D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.10、B【解析】由垂直关系得出直线l方程,联立直线和抛物线方程,利用韦达定理以及数量积公式得出p的值.【详解】,,即联立直线和抛物线方程得设,则解得故选:B11、A【解析】利用正态分布的对称性和概率的性质即可【详解】由,且则有:根据正态分布的对称性可知:故选:A12、C【解析】根据新定义只需求锐角三角形外接圆的方程即可得解.【详解】,,,为锐角三角形,的外接圆就是它的最小覆盖圆,设外接圆方程为,则解得的最小覆盖圆方程为,即,的最小覆盖圆的半径为.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】不妨设点为第一象限内的点,求出点的坐标,可求得直线、的方程,求出点、的坐标,可求得以及点到直线的距离,利用三角形的面积公式可求得的面积.【详解】不妨设点为第一象限内的点,设点,其中,则,可得,即点,抛物线的焦点为,,所以,直线的方程为,联立,解得或,即点,所以,,直线的方程为,抛物线的准线方程为,联立,可得点,点到直线的距离为,因此,.故答案为:.14、【解析】复数,其实部为.考点:复数的乘法运算、实部.15、【解析】过F作,利用点到直线距离可求出,再根据勾股定理可得,,由可得,即可建立关系求解.【详解】如图,过F作,则E是AB中点,设渐近线为,则,则在直角三角形OEF中,,在直角三角形BEF中,,,则,即,即,则,即,.故答案为:.【点睛】本题考查双曲线离心率的求解,解题的关键是分别表示出,,由建立关系.16、【解析】取的中点,连接,,过点A作,垂足为,设,利用三角形的边角关系求出,利用锥体的体积公式求出的值,确定三棱锥外接球的球心,求解外接球的半径,由表面积公式求解即可【详解】取的中点,连接,,过点A作,交DE的延长线于点,所以为二面角的平面角,设,则,,所以,所以,EH=,因为三棱锥的体积为,所以,解得:,,设外接圆的圆心为,三棱锥外接球的球心为,连接,,,过点O作OF⊥AH于点F,则,,,,设,则,,由勾股定理得:,解得:,所以三棱锥外接球的半径满足,则三棱锥的外接球的表面积为故答案为:【点睛】本题考查了几何体的外接球问题,棱锥的体积公式的理解与应用,解题的关键是确定外接球球心的位置,三棱锥的外接球的球心在过各面外心且与此面垂直的直线上,由此结论可以找到外接球的球心,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)先求得椭圆的,代入公式即可求得椭圆的方程;(2)以设而不求的方法得到两根和,再由条件,得到四边形为平行四边形,并以向量方式进行等价转化,再与恒为定值进行联系,即可求得的值.【小问1详解】由条件可设椭圆:,因为抛物线:的焦点为,所以,解得因为椭圆离心率为,所以,则,故椭圆的方程为【小问2详解】设直线:,,,把直线的方程代入椭圆的方程,可得,所以,因为,,所以四边形为平行四边形,得,即,得由在椭圆上可得,,即因为,又所以,所以将代入得,所以,即.【点睛】数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。18、(1),(2)8【解析】(1)利用已知的关系把替换成,再把两式作差后整理即得通项公式,的通项公式可由已知条件建立基本量的方程求解.(2)由的通项公式可判断,,,当时,所有正项的和即为的最大项的值.小问1详解】,,两式相减得所以,又也满足,故;设等比数列的公比为,由得,即,因为,即,,(负值舍去),所以【小问2详解】由题意,,则,,,且当时,所以的最大值是.19、(1)(2)或【解析】(1)根据题意可得,又因为且,解得,可得双曲线方程,进而可得的渐近线方程(2)设直线的方程为:,,,联立直线与双曲线方程,可得关于的一元二次方程,由韦达定理可得,,再由两点之间距离公式得,解得,进而由可求出,即可求得离心率.【小问1详解】∵点是双曲线的一个焦点,∴,又∵且,解得,∴双曲线方程为,∴的渐近线方程为:;小问2详解】设直线的方程为,且,,联立,可得,则,∴,即,∴,解得或,即由可得或,故双曲线的离心率或.20、(1)列联表见解析,能有;(2)分布列见解析,.【解析】(1)利用数据直接填写联列表即可,求出,即可回答是否有的把握认为“网购者对商品满意与对服务满意之间有关系;(2)由题意可得的可能值为0,1,2,3,分别可求其概率,可得分布列,进而可得数学期望.【详解】(1)服务满意对服务不满意合计对商品满意8040120对商品不满意701080合计15050200,因为,所以能有的把握认为“网购者对商品满意与对服务满意之间有关系”(2)每次购物时,对商品和服务都满意的概率为,且的取值可以是0,1,2,3.;;;.的分布列为:0123所以.【点睛】本题主要考查独立检验以及离散性随机变量的分布列以及期望的求法,考查转化思想以及计算能力,属于中档题.21、(1);(2);(3)【解析】(1)由椭圆方程即可求出离心率.(2)求出椭圆的焦点即为抛物线的焦点,即可求出答案.(3)由抛物线定义可求出点的坐标【小问1详解】由题意可知,.【小问2详解】椭圆的右焦点为,故抛物线的焦点为.抛物线的方程为.【小问3详解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论