




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省攀枝花市第十二中学高二上数学期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列的通项公式,数列,其前项和为,则等于()A. B.C. D.2.某工厂节能降耗技术改造后,在生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据如下表,现发现表中有个数据看不清,已知回归直线方程为=6.3x+6.8,下列说法正确的是()x23456y1925★4044A.看不清的数据★的值为33B.回归系数6.3的含义是产量每增加1吨,相应的生产能耗实际增加6.3吨C.据此模型预测产量为8吨时,相应的生产能耗为50.9吨D.回归直线=6.3x+6.8恰好经过样本点(4,★)3.已知椭圆及以下3个函数:①;②;③,其中函数图象能等分该椭圆面积的函数个数有()A.0个 B.1个C.2个 D.3个4.从全体三位正整数中任取一数,则此数以2为底的对数也是正整数的概率为()A. B.C. D.以上全不对5.已知F是椭圆C的一个焦点,B是短轴的一个端点,直线BF与椭圆C的另一个交点为D,且,则C的离心率为()A. B.C. D.6.已知数列满足,则()A.32 B.C.1320 D.7.已知是偶函数的导函数,.若时,,则使得不等式成立的的取值范围是()A. B.C. D.8.直线与曲线相切于点,则()A. B.C. D.9.若复数满足,则复平面内表示的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限10.《九章算术》是我国古代的数学巨著,书中有如下问题:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次渐多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增的等差数列,这5个人各出多少钱?”在这个问题中,若公士出28钱,则不更出的钱数为()A.14 B.16C.18 D.2011.已知正实数a,b满足,若不等式对任意的实数x恒成立,则实数m的取值范围是()A. B.C. D.12.已知是空间的一个基底,若,,若,则()A B.C.3 D.二、填空题:本题共4小题,每小题5分,共20分。13.正方体的棱长为2,点为底面正方形的中心,点在侧面正方形的边界及其内部运动,若,则点的轨迹的长度为______14.已知,分别是双曲线的左、右焦点,P是其一条渐近线上的一点,且以为直径的圆经过点P,则的面积为___________.15.已知函数,若存在唯一零点,则的取值范围是__________.16.设,则_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面为的中点(1)求证:平面;(2)若,求平面与平面的夹角大小18.(12分)如图所示,在四棱锥中,底面是正方形,侧棱底面,,是的中点,过点作交于点.求证:(1)平面;(2)平面.19.(12分)为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为,;1小时以上且不超过2小时离开的概率分别为,;两人滑雪时间都不会超过3小时.求甲、乙两人所付滑雪费用相同的概率;20.(12分)如图,在四棱锥中,平面ABCD,,,且,,.(1)求证:平面PAC;(2)已知点M是线段PD上的一点,且,当三棱锥的体积为1时,求实数的值.21.(12分)设:实数满足,:实数满足(1)若,且为真,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围22.(10分)已知函数(1)求函数在点处的切线方程;(2)求函数的单调区间及极值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据裂项求和法求得,再计算即可.【详解】解:由题意得====所以.故选:D2、D【解析】根据回归直线方程的性质和应用,对每个选项进行逐一分析,即可判断和选择.【详解】对A:因为,将代入,故,∴,故A错误;对,回归系数6.3的含义是产量每增加1吨,相应的生产能耗大约增加6.3吨,故错误;对,当时,,故错误;对,因为,故必经过,故正确.故选:.3、C【解析】由椭圆的几何性质可得椭圆的图像关于原点对称,因为函数,函数为奇函数,其图像关于原点对称,则①②满足题意,对于函数在轴右侧时,,只有时,,即函数在轴右侧的图像显然不能等分椭圆在轴右侧的图像的面积,又函数为偶函数,其图像关于轴对称,则函数在轴左侧的图像显然也不能等分椭圆在轴左侧的图像的面积,即函数的图像不能等分该椭圆面积,得解.【详解】解:因为椭圆的图像关于原点对称,对于①,函数为奇函数,其图像关于原点对称,即可知的图象能等分该椭圆面积;对于②,函数为奇函数,其图像关于原点对称,即可知的图象能等分该椭圆面积;对于③,对于函数在轴右侧时,,只有时,,即函数在轴右侧的图像(如图)显然不能等分椭圆在轴右侧的图像的面积,又函数为偶函数,其图像关于轴对称,则函数在轴左侧的图像显然也不能等分椭圆在轴左侧的图像的面积,即函数的图像不能等分该椭圆面积,即函数图象能等分该椭圆面积的函数个数有2个,故选C.【点睛】本题考查了椭圆的几何性质、函数的奇偶性及函数的对称性,重点考查了函数的性质,属基础题.4、B【解析】利用古典概型的概率求法求解.【详解】从全体三位正整数中任取一数共有900种取法,以2为底的对数也是正整数的三位数有,共3个,所以以此数以2为底的对数也是正整数的概率为,故选:B5、A【解析】设,根据得,代入椭圆方程即可求得离心率.【详解】设椭圆方程,所以,设,所以,所以,在椭圆上,所以,.故选:A6、A【解析】先令,求出,再当时,由,可得,然后两式相比,求出,从而可求出,进而可求得答案【详解】当时,,当时,由,可得,两式相除可得,所以,所以,故选:A7、C【解析】构造函数,分析函数在上的单调性,将所求不等式变形为,可得出关于的不等式,即可得解.【详解】构造函数,其中,则,所以,函数为上的奇函数,当时,,且不恒为零,所以,函数在上为增函数,且该函数在上也为增函数,故函数在上为增函数,因为,则,由得,可得,解得故选:C.8、A【解析】直线与曲线相切于点,可得求得的导数,可得,即可求得答案.【详解】直线与曲线相切于点将代入可得:解得:由,解得:.可得,根据在上,解得:故故选:A.【点睛】本题考查了根据切点求参数问题,解题关键是掌握函数切线的定义和导数的求法,考查了分析能力和计算能力,属于中档题.9、A【解析】根据复数的运算法则,求得,结合复数的几何意义,即可求解.【详解】由题意,复数满足,可得,所以复数在复平面内对应的点的坐标为,位于第一象限.故选:A.10、B【解析】由题可知这是一个等差数列,前项和,,列式求基本量即可.【详解】设每人所出钱数成等差数列,公差为,前项和为,则由题可得,解得,所以不更出的钱数为.故选:B11、D【解析】利用基本不等式求出的最小值16,分离参数即可.【详解】因为,,,所以,当且仅当,即,时取等号由题意,得,即对任意的实数x恒成立,又,所以,即故选:D12、C【解析】由,可得存在实数,使,然后将代入化简可求得结果【详解】,,因为,所以存在实数,使,所以,所以,所以,得,,所以,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】取中点,利用线面垂直的判定方法可证得平面,由此可确定点轨迹为,再计算即可.【详解】取中点,连接,平面,平面,,又四边形为正方形,,又,平面,平面,又平面,;由题意得:,,,,;平面,,平面,,在侧面的边界及其内部运动,点轨迹为线段;故答案为:.14、【解析】先得出渐近线方程和圆的方程,然后解出点P的纵坐标,进而求出面积.【详解】由题意,渐近线方程为:,,圆的方程为:,联立:,所以.故答案为:.15、【解析】求得函数的导数,得到是的唯一零点,转化为方程无实数根或只存在实数根,进而转化为和的图象至多有一个交点(且如果有交点,交点必须在处),利用导数求得函数的单调性和最小值,即可求解.【详解】由题意,函数,可得,因为存在唯一零点,所以是的唯一零点,则关于的方程无实数根或只存在实数根,所以函数和的图象至多有一个交点(且如果有交点,交点必须在处),又由,当时,,单调递减;当时,,单调递增,所以,所以,即即的取值范围是.故答案为:.16、【解析】求出函数的导数,再令,即可得出答案.【详解】解:由,得,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)取中点,连结,证得,利用线面平行的判定定理,即可求解;(2)以为原点,以方面为轴,以方向为轴,以方向为轴,建立坐标系,利用平面和平面的法向量的夹角公式,即可求解【小问1详解】取中点,连结,由,,则,又由平面,平面,所以平面.【小问2详解】以为原点,以方面为轴,以方向为轴,以方向为轴,建立坐标系,可得,,,,,则,,设平面的一个法向量为,则,即,令,则又平面的法向量为;则,所以平面与平面所成的锐二面角为.18、(1)证明见解析;(2)证明见解析.【解析】(1)连结、,交于点,连结,通过即可证明;(2)通过,
可证平面,即得,进而通过平面得,结合即证.详解】证明:(1)连结、,交于点,连结,底面正方形,∴是中点,点是的中点,.平面,
平面,∴平面.(2),点是的中点,.底面是正方形,侧棱底面,∴,
,且
,∴平面,∴,又,∴平面,∴,,,平面.【点睛】本题考查线面平行和线面垂直的证明,属于基础题.19、【解析】甲、乙两人所付费用相同即为、、,求出相应的概率,利用互斥事件的概率公式,可求出甲、乙两人所付费用相同的概率;【详解】两人所付费用相同,相同费用可能为0,40,80元,两人都付0元的概率为,两人都付40元的概率为,两人都付80元的概率为,故两人所付费用相同的概率为.20、(1)证明见解析(2)3【解析】(1)证明出,且,从而证明出线面垂直;(2)先用椎体体积公式求出,利用体积之比得到线段之比,从而得到的值.【小问1详解】证明:∵平面ABCD,且平面ABCD,∴.又因为,且,∴四边形ABCD为直角梯形.又因为,,易得,,∴,∴.又因为AC,PA是平面PAC的两条相交直线,∴平面PAC.【小问2详解】由(1)知且,∴.又∵平面ABCD,.又∵,∴,∴点M到平面ABC的距离为,∴,∴.21、(1)(2)【解析】(1)根据二次不等式与分式不等式的求解方法求得命题p,q为真时实数x的取值范围,再求交集即可;(2)先求得,再根据是的必要不充分条件可得,再根据集合包含关系,根据区间端点列不等式求解即可【小问1详解】当时,,解得,即p为真时,实数x的取值范围为.由,解得,即q为真
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人借条合同范本
- 2025年度瓷砖采购合同模板
- 2025杭州写字楼租金租赁合同范本
- 2025标准车位买卖合同范文
- 《大承气汤》课件 - 深入解析中医方剂
- 2025药店购销合同模板
- 2025合作联盟合同书
- 2025办公设备租赁合同协议(范本)
- 《温馨小窝拒绝暴力的课件》
- 2025航空运输货物保险合同
- 2025年上海市普陀区中考英语二模试卷(含答案)
- 玉盘二部合唱正谱
- 2025年第六届(中小学组)国家版图知识竞赛测试题库及答案
- 色卡-CBCC中国建筑标准色卡(千色卡1026色)
- DB32T 3544-2019 临床级人体组织来源间充质干细胞 质量控制管理规范
- 国药茶色素讲稿30课件
- 鲁科版五年级英语下How many ducks do you have?课件2
- 医院药品信息管理系统(DOC)
- isa-381g站用变接地保护测控装置技术使用说明书南网版v3
- 计算机应用基础(中等职业学校校本教材)
- 完整版健康管理师
评论
0/150
提交评论