2024届新疆师范大学附属实验高中数学高二上期末教学质量检测模拟试题含解析_第1页
2024届新疆师范大学附属实验高中数学高二上期末教学质量检测模拟试题含解析_第2页
2024届新疆师范大学附属实验高中数学高二上期末教学质量检测模拟试题含解析_第3页
2024届新疆师范大学附属实验高中数学高二上期末教学质量检测模拟试题含解析_第4页
2024届新疆师范大学附属实验高中数学高二上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届新疆师范大学附属实验高中数学高二上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“赵爽弦图”是我国古代数学的瑰宝,如图所示,它是由四个全等的直角三角形和一个正方形构成.现用4种不同的颜色(4种颜色全部使用)给这5个区域涂色,要求相邻的区域不能涂同一种颜色,每个区域只涂一种颜色,则不同的涂色方案有()A.24种 B.48种C.72种 D.96种2.直线的斜率为()A.135° B.45°C.1 D.-13.已知是数列的前项和,,则数列是()A.公比为3的等比数列 B.公差为3的等差数列C.公比为的等比数列 D.既非等差数列,也非等比数列4.如图所示,已知是椭圆的左、右焦点,为椭圆的上顶点,在轴上,,且是的中点,为坐标原点,若点到直线的距离为3,则椭圆的方程为()A B.C. D.5.若正实数、满足,且不等式有解,则实数取值范围是()A.或 B.或C. D.6.已知球O的半径为2,球心到平面的距离为1,则球O被平面截得的截面面积为()A. B.C. D.7.已知点是双曲线的左、右焦点,以线段为直径的圆与双曲线在第一象限的交点为,若,则()A.与双曲线的实轴长相等B.的面积为C.双曲线的离心率为D.直线是双曲线的一条渐近线8.若方程表示圆,则实数m的取值范围为()A B.C. D.9.在中,角A,B,C所对的边分别为a,b,c,,,则()A. B.1C.2 D.410.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.如图,在平行六面体中,()A. B.C. D.12.若x,y满足约束条件,则的最大值为()A.2 B.3C.4 D.5二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的前项和为,若,,则数列的前2021项和为___________.14.某厂将从64名员工中用系统抽样的方法抽取4名参加2011年职工劳技大赛,将这64名员工编号为1~64,若已知8号、24号、56号在样本中,那么样本中最后一个员工的号码是__________15.总书记在2021年2月25日召开的全国脱贫攻坚总结表彰大会上发表重要讲话,庄严宣告,在迎来中国共产党成立一百周年的重要时刻,我国脱贫攻坚取得了全面胜利.在脱贫攻坚过程中,为了解某地农村经济情况,工作人员对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下列结论中所存确结论的序号是____________①该地农户家庭年收入低于4.5万元的农户比率估计为6%;②该地农户家庭年收入不低于10.5万元的农户比率估计为10%;③估计该地农户家庭年收入的平均值不超过6.5万元;④估计该地有一半以上农户,其家庭年收入介于4.5万元至8.5万元之间16.作边长为6的正三角形的内切圆,半径记为,在这个圆内作内接正三角形,然后再作新三角形的内切圆.如此下去,第n个正三角形的内切圆半径记为,则______,现有1个半径为的圆,2个半径为的圆,……,个半径为的圆,n个半径为的圆,则所有这些圆的面积之和为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的离心率为,,分别为椭圆的左,右焦点,为椭圆上一点,的周长为.(1)求椭圆的方程;(2)为圆上任意一点,过作椭圆的两条切线,切点分别为A,B,判断是否为定值?若是,求出定值:若不是,说明理由,18.(12分)已知椭圆,过焦点且垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.(1)求椭圆的方程;(2)过点的直线交椭圆于,两点,交直线于点,且,.求证:为定值,并计算出该定值.19.(12分)已知椭圆的焦距为,左、右焦点分别为,为椭圆上一点,且轴,,为垂足,为坐标原点,且(1)求椭圆的标准方程;(2)过椭圆的右焦点的直线(斜率不为)与椭圆交于两点,为轴正半轴上一点,且,求点的坐标20.(12分)已知椭圆:过点,其左、右顶点分别为,,上顶点为,直线与直线的斜率之积为.(1)求椭圆的方程;(2)如图,直线:分别与线段(不含端点)和线段的延长线交于,两点,直线与椭圆的另一交点为,求证:,,三点共线.21.(12分)已知椭圆的离心率为,以椭圆两个焦点与短轴的一个端点为顶点构成的三角形的面积为(1)求椭圆C的标准方程;(2)过点作直线l与椭圆C相切于点Q,且直线l斜率大于0,过线段PQ的中点R作直线交椭圆于A,B两点(点A,B不在y轴上),连结PA,PB,分别与椭圆交于点M,N,试判断直线MN的斜率是否为定值;若是,请求出该定值22.(10分)如图,在平面直角坐标系上,已知圆的直径,定直线到圆心的距离为,且直线垂直于直线,点是圆上异于、的任意一点,直线、分别交与、两点(1)求过点且与圆相切的直线方程;(2)若,求以为直径的圆方程;(3)当点变化时,以为直径的圆是否过圆内的一定点,若过定点,请求出定点;若不过定点,请说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意,分2步进行分析区域①、②、⑤和区域③、④的涂色方法,由分步计数原理计算可得答案.【详解】根据题意,分2步进行分析:当区域①、②、⑤这三个区域两两相邻,有种涂色的方法;当区域③、④,必须有1个区域选第4种颜色,有2种选法,选好后,剩下的区域有1种选法,则区域③、④有2种涂色方法,故共有种涂色的方法.故选:B2、D【解析】由斜截式直接看出直线斜率.【详解】由题意得:直线斜率为-1,故选:D3、D【解析】由得,然后利用与的关系即可求出【详解】因为,所以所以当时,时,所以故数列既非等差数列,也非等比数列故选:D【点睛】要注意由求要分两步:1.时,2.时.4、D【解析】由题设可得,直线的方程为,点线距离公式表示到直线的距离,又联立解得即可得出答案.【详解】且,则△是等边三角形,设,则①,∴直线方程为,即,∴到直线的距离为②,又③,联立①②③,解得,,故椭圆方程为.故选:D.5、A【解析】将代数式与相乘,展开后利用基本不等式可求得的最小值,可得出关于实数的不等式,解之即可.【详解】因为正实数、满足,则,即,所以,,当且仅当时,即当时,等号成立,即的最小值为,因为不等式有解,则,即,即,解得或.故选:A.II卷6、B【解析】根据球的性质可求出截面圆的半径即可求解.【详解】由球的性质可知,截面圆的半径为,所以截面的面积.故选:B7、B【解析】由题意及双曲线的定义可得,的值,进而可得A不正确,计算可判断B正确,再求出,的关系可得C不正确,求出,的关系,进而求出渐近线的方程,可得D不正确【详解】因为,又由题意及双曲线的定义可得:,则,,所以A不正确;因为在以为直径的圆上,所以,所以,所以B正确;在△中,由勾股定理可得,即,所以离心率,所以C不正确;由C的分析可知:,故,所以渐近线的方程为,即,所以D不正确;故选:B8、D【解析】根据,解不等式即可求解.【详解】由方程表示圆,则,解得.所以实数m的取值范围为.故选:D9、C【解析】直接运用正弦定理可得,解得详解】由正弦定理,得,所以故选:C10、B【解析】求出不等式的等价形式,结合充分条件和必要条件的定义进行判断即可【详解】由得或,由得,因为或推不出,但能推出或成立,所以“”是“”的必要不充分条件,故选:B11、B【解析】由空间向量的加法的平行四边形法则和三角形法则,可得所求向量【详解】连接,可得,又,所以故选:B.12、C【解析】作出不等式组对应的可行域,再利用数形结合分析求解.【详解】解:作出不等式组对应的可行域为如图所示的阴影部分区域,由得,它表示斜率为纵截距为的直线系,当直线平移到点时,纵截距最大,最大.联立直线方程得得.所以.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意求出,代入中,再利用裂项相消即可求出答案.【详解】由是等差数列且,可知:,故.,数列的前2021项和为.故答案为:.14、40【解析】结合系统抽样的抽样方法来确定最后抽取的号码.【详解】因为分段间隔为,故最后一个员工的号码为.故答案为:15、①②④【解析】利用频率分布直方图中频率的求解方法,通过求解频率即可判断选项①,②,④,利用平均值的计算方法,即可判断选项③【详解】解:对于①,该地农户家庭年收入低于4.5万元的农户比率为,故选项①正确;对于②,该地农户家庭年收入不低于10.5万元的农户比率为,故选项②正确;对于③,估计该地农户家庭年收入的平均值为万元,故选项③错误;对于④,家庭年收入介于4.5万元至8.5万元之间的频率为,故估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间,故选项④正确故答案为:①②④16、①;②..【解析】设第n个三角形的边长为,进而根据题意求出,然后根据等面积法求出,再求出;设n个半径为的圆的面积为并求出,进而运用错位相减法求得答案.【详解】如示意图1,设第n个三角形的边长为,易得,则是以6为首项,为公比的等比数列,所以.如示意图2,易得:,,所以,所以.设n个半径为的圆的面积为,则,记所有圆的面积之和为,则,所以,两式相减得:,即.故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)是;【解析】(1)由离心率和焦点三角形周长可求出,结合关系式得出,即可得出椭圆的方程;(2)由平行于轴特殊情况求出,即;当平行于轴时,设过的直线为,联立椭圆方程,令化简得关于的二次方程,由韦达定理即可求解.【小问1详解】由题可知,,解得,又,解得,故椭圆的标准方程为:;【小问2详解】如图所示,当平行于轴时,恰好平行于轴,,,;当不平行于轴时,设,设过点的直线为,联立得,令得,化简得,设,则,又,故,即.综上所述,.18、(1)(2)证明见解析,定值为【解析】(1)由题意得,从而写出椭圆的方程即可;(2)易知直线斜率存在,令,,,,,将直线的方程代入椭圆的方程,消去得到关于的一元二次方程,再结合根系数的关系利用向量的坐标公式即可求得值,从而解决问题.【小问1详解】(1)由条件得,所以方程为【小问2详解】易知直线斜率存在,令,,,由,因为,所以,即-1-x1因为,所以,即-4-x1由①,由②将,代入上式,得19、(1)(2)【解析】(1)利用△∽△构造齐次方程,求出离心率,再利用焦距即可求出椭圆方程;(2)将直线方程与椭圆方程联立利用韦达定理求出和,利用几何关系可知,即可得,将韦达定理代入化简即可求得点坐标.【小问1详解】∵椭圆的焦距为,∴,即,轴,∴,则,由,,则△∽△,∴,即,整理得,即,解得或(舍去)∴,∴,则椭圆的标准方程为,【小问2详解】设直线的方程为,且,将直线方程与椭圆方程联立得,,则,,∵,∴,∴,∴,∴,即.20、(1);(2)证明见解析.【解析】(1)由和,联立求解;(2)由(1)易得直线:,直线:,,分别与x=t联立,求得M,N坐标,设,利用,得到,然后两边乘以,结合点P在椭圆上化简得到即可,【详解】(1)在椭圆中,,,,则,,由题意得:,又,解得,,所以椭圆的方程为.(2)由(1)可知,,,,则直线:,直线:,由题意,,联立,同理联立,设,则①,且点满足:,即,两边乘以,可得:,代入①得:,而,则,所以,,三点共线.21、(1)(2)是,【解析】(1)根据离心率以及椭圆两个焦点与短轴的一个端点为顶点构成的三角形的面积列出等式即可求解;(2)设出相关直线与相关点的坐标,直线与椭圆联立,点的坐标配合斜率公式化简,再运用韦达理化简可证明.【小问1详解】由题意得,解得,则椭圆C的标准方程为【小问2详解】设切线PQ的方程为,,,,,由,消去y得①,则,解得或(舍去),将代入①得,,解得,则,所以,又R为PQ中点,则,因为PA,PB斜率都存在,不妨设,,由①可得,所以,,同理,,则,又R,A,B三点共线,则,化简得,所以.22、(1)或(2)(3)过定点,定点坐标为【解析】(1)对所求直线的斜率是否存在进行分类讨论,在所求直线斜率不存在时,直接验证直线与圆相切;在所求直线斜率存在时,设所求直线方程为,利用点到直线的距离公式可得出关于的等式,求出的值,综合可得出所求直线的方程;(2)分点在轴上方、点在轴下方两种情况讨论,求出点、的坐标,可得出所求圆的圆心坐标和半径,即可得出所求圆的方程;(3)设直线的方程为,其中,求出点、的坐标,可求得以线段为直径的圆的方程,并化简圆的方程,可求得定点的坐标.【小问1详解】解:易知圆的方程为,圆心为原点,半径为,若所求直线的斜率不存在,则所求直线的方程为,此时直线与圆相切,合乎题意,若所求直线的斜率存在,设所求直线的方程为,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论