版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省安岳县周礼中学数学高二上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,是边长为4的等边三角形的中位线,将沿折起,使得点A与P重合,平面平面,则四棱锥外接球的表面积是()A. B.C. D.2.已知、分别是椭圆的左、右焦点,A是椭圆上一动点,圆C与的延长线、的延长线以及线段相切,若为其中一个切点,则()A. B.C. D.与2的大小关系不确定3.已知等比数列的首项为1,公比为2,则=()A. B.C. D.4.命题P:ax2+2x﹣1=0有实数根,若¬p是假命题,则实数a的取值范围是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}5.已知函数,其中e是自然数对数的底数,若,则实数a的取值范围是A. B.C. D.6.过抛物线的焦点的直线交抛物线于不同的两点,则的值为A.2 B.1C. D.47.函数的大致图象是()A. B.C. D.8.若集合,,则A. B.C. D.9.如图,两个半径为R的相交大圆,分别内含一个半径为r的同心小圆,且同心小圆均与另一个大圆外切.已知时,在两相交大圆的区域内随机取一点,则该点取自两大圆公共部分的概率为()A. B.C. D.10.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是A.440 B.330C.220 D.11011.与的等差中项是()A. B.C. D.12.某几何体的三视图如图所示,则其对应的几何体是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,已知正方形边长为,长方形中,,平面与平面互相垂直,是线段的中点,则异面直线与所成角的余弦值为______14.已知点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点,则|的最小值是_________15.已知点是抛物线上的两点,,点是抛物线的焦点,若,则的值为__________16.若椭圆的焦点在轴上,且长轴长是短轴长的2倍,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的内角A,B,C的对边分别为a,b,c.已知.(1)求B(2)___________,若问题中的三角形存在,试求出;若问题中的三角形不存在,请说明理由.在①,②,③这三个条件中任选一个,补充在横线上.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)设双曲线的左、右焦点分别为,,且,一条渐近线的倾斜角为60°(1)求双曲线C的标准方程和离心率;(2)求分别以,为左、右顶点,短轴长等于双曲线虚轴长的椭圆的标准方程19.(12分)男子10米气步枪比赛规则如下:在资格赛中,射手在距离靶子10米处,采用立姿,在105分钟内射击60发子弹,总环数排名前8名的射手进入决赛;在决赛中,每位射手仅射击10发子弹.已知甲乙两名运动员均进入了决赛,资格赛中的环数情况整理得下表:环数频数678910甲2352327乙5502525以各人这60发子弹环数的频率作为决赛中各发子弹环数发生的概率,甲乙两人射击互不影响(1)求甲运动员在决赛中前2发子弹共打出1次10环的概率;(2)决赛打完第9发子弹后,甲比乙落后2环,求最终甲能战胜乙(甲环数大于乙环数)的概率20.(12分)已知等差数列的前n项和为,等比数列的前n项和为,且,,(1)求,;(2)已知,,试比较,的大小21.(12分)已知函数在处的切线垂直于直线.(1)求(2)求的单调区间22.(10分)在平面直角坐标系中,动点到点的距离和它到直线的距离之比为.动点的轨迹为曲线.(1)求曲线的方程,并说明曲线是什么图形;(2)已知曲线与轴的交点分别为,点是曲线上异于的一点,直线的斜率为,直线的斜率为,求证:为定值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分别取的中点,易得,则点为四边形的外接圆的圆心,则四棱锥外接球的球心在过点且垂直平面的直线上,设球心为,设外接球的半径为,,利用勾股定理求得半径,从而可得出答案.【详解】解:分别取的中点,在等边三角形中,,是中位线,则都是等边三角形,所以,所以点为四边形的外接圆的圆心,则四棱锥外接球的球心在过点且垂直平面的直线上,设球心为,由为的中点,所以,因为平面平面,且平面平面,平面,所以平面,则,设外接球半径为,,,则,,所以,解得,所以,所以四棱锥外接球的表面积是.故选:A.第II卷2、A【解析】由题意知,圆C是的旁切圆,点是圆C与轴的切点,设圆C与直线的延长线、分别相切于点、,由切线的性质可知:,,,结合椭圆的定义,即可得出结果.【详解】由题意知,圆C是的旁切圆,点是圆C与轴的切点,设圆C与直线的延长线、分别相切于点、,则由切线的性质可知:,,,所以,所以,所以.故选A【点睛】本题主要考查圆与圆锥曲线的综合,熟记椭圆的定义,以及切线的性质即可,属于常考题型.3、D【解析】数列是首项为1,公比为4的等比数列,然后可算出答案.【详解】因为等比数列的首项为1,公比为2,所以数列是首项为1,公比为4的等比数列所以故选:D4、C【解析】根据是假命题,判断出是真命题.对分成,和两种情况,结合方程有实数根,求得的取值范围.详解】┐p是假命题,则p是真命题,∴ax2+2x﹣1=0有实数根,当a=0时,方程为2x﹣1=0,解得x=0.5,有根,符合题意;当a≠0时,方程有根,等价于△=4+4a≥0,∴a≥﹣1且,综上所述,a的可能取值为a≥﹣1故选:C【点睛】本小题主要考查根据命题否定的真假性求参数,属于基础题.5、B【解析】利用函数的奇偶性将函数转化为f(M)≤f(N)的形式,再利用单调性脱去对应法则f,转化为一般的二次不等式求解即可【详解】由于,,则f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函数f(x)为奇函数故原不等式f(a﹣1)+f(2a2)≤0,可转化为f(2a2)≤﹣f(a﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);又f'(x)=3x2﹣cosx+ex+e﹣x,由于ex+e﹣x≥2,故ex+e﹣x﹣cosx>0,所以f'(x)=3x2﹣cosx+ex+e﹣x≥0恒成立,故函数f(x)单调递增,则由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,解得,故选B【点睛】本题考查了函数的奇偶性和单调性的判定及应用,考查了不等式的解法,属于中档题6、D【解析】本题首先可以通过直线交抛物线于不同的两点确定直线的斜率存在,然后设出直线方程并与抛物线方程联立,求出以及的值,然后通过抛物线的定义将化简,最后得出结果【详解】因为直线交抛物线于不同的两点,所以直线的斜率存在,设过抛物线的焦点的直线方程为,由可得,,因为抛物线的准线方程为,所以根据抛物线的定义可知,,所以,综上所述,故选D【点睛】本题考查了抛物线的相关性质,主要考查了抛物线的定义、过抛物线焦点的直线与抛物线相交的相关性质,考查了计算能力,是中档题7、A【解析】由得出函数是奇函数,再求得,,运用排除法可得选项.【详解】法一:由函数,则,所以函数为奇函数,图象关于原点对称,所以排除B;因为,所以排除D;因为,所以排除C,故选:A.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.8、A【解析】通过解不等式得出集合B,可以做出集合A与集合B的关系示意图,可得出选项.【详解】因为,解不等式即,所以或,所以集合,作出集合A与集合B的示意图如下图所示:所以:,故选A【点睛】本题考查集合间的交集运算,属于基础题.9、C【解析】设D为线段AB的中点,求得,在中,可得.进而求得两大圆公共部分的面积为:,利用几何概型计算即可得出结果.【详解】如图,设D为线段AB的中点,,在中,.两大圆公共部分的面积为:,则该点取自两大圆公共部分的概率为.故选:C.10、A【解析】由题意得,数列如下:则该数列的前项和为,要使,有,此时,所以是第组等比数列的部分和,设,所以,则,此时,所以对应满足条件的最小整数,故选A.点睛:本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.Ⅱ卷11、A【解析】代入等差中项公式即可解决.【详解】与的等差中项是故选:A12、A【解析】根据三视图即可还原几何体.【详解】根据三视图,特别注意到三视图中对角线的位置关系,容易判断A正确.【点睛】本题主要考查了三视图,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立如图所示的空间直角坐标系,求出,后可求异面直线所成角的余弦值.【详解】长方形可得,因为平面与平面互相垂直,平面平面,平面,故平面,故可建立如图所示的空间直角坐标系,则,故,,故.故答案为:14、##【解析】由抛物线的定义可得,所以的最小值转化为求的最小值,由图可知的最小值为,从而可求得答案【详解】抛物线y2=2x焦点,准线为,由抛物线的定义可得,所以,因为,,所以,所以,当且仅当三点共线且在线段上时,取得最小值,所以的最小值为,故答案为:15、10【解析】由抛物线的定义根据题意可知求得p,代入抛物线方程,分别求得y1,y2的值,即可求得y12+y2的值【详解】由抛物线的定义可得,依据题设可得,则(舍去负值),故,故填.【点睛】本题考查抛物线的定义和性质,利用已知相等关系求解抛物线方程,然后求解已知点的纵坐标,解题中需要熟练抛物的定义和性质,灵活应用.16、4【解析】根据椭圆焦点在轴上方程的特征进行求解即可.【详解】因为椭圆的焦点在轴上,所以有,因为长轴长是短轴长的2倍,所以有,故答案为:4三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)答案见解析【解析】(1)由正弦定理及正弦的两角和公式可求解;(2)选择条件①,由正弦定理及辅助角公式可求解;选择条件②,由余弦定理及正切三角函数可求解;选择条件③,由余弦定理可求解.【小问1详解】由,可得,则.∴,在中,,则,∵,∴,∴,∵,∴.【小问2详解】选择条件①,在中,,可得,∵,∴,∴,根据辅助角公式,可得,∵,∴,即,故选择条件②由,得,∵,∴,因此,,整理得,即,则.在中,,∴.故.选择条件③由,得,即,整理得,由于,则方程无解,故不存在这样的三角形.18、(1),2(2)【解析】(1)结合,联立即得解;(2)由题意,即得解.【详解】(1)由题意,又解得:故双曲线C的标准方程为:,离心率为(2)由题意椭圆的焦点在轴上,设椭圆方程为故即椭圆方程为:19、(1)(2)【解析】(1)先求出甲运动员打中10环的概率,从而可求出甲运动员在决赛中前2发子弹共打出1次10环的概率;(2)由于甲比乙落后2环,所以甲要获胜,则乙6环,甲9环或10环,或者乙7环,甲10环,再利用独立事件和互斥事件的概率公式求解即可【小问1详解】由表中的数据可得甲运动员打中10环的概率为,所以甲运动员在决赛中前2发子弹共打出1次10环的概率为【小问2详解】因为甲比乙落后2环,所以甲要获胜,则乙打中6环,甲打中9环或10环,或者乙打中7环,甲打中10环,因为由题意可得乙打中6环的概率和打中7环的概率均为,甲打中9环的概率为,打中10环的概率为,且甲乙两人射击互不影响所以最终甲能战胜乙的概率为20、(1),;(2).【解析】(1)设等差数列的公差,等比数列的公比,由已知列式计算得解.(2)由(1)的结论,用等比数列前n项和公式求出,用裂项相消法求出,再比较大小作答.【小问1详解】设等差数列的公差为,等比数列的公比为,依题意,,整理得:,解得,所以,.【小问2详解】由(1)知,,数列是首项为,公比为的等比数列,则,,,则,用数学归纳法证明,,①当时,左边,右边,左边>右边,即原不等式成立,②假设当时,不等式成立,即,则,即时,原不等式成立,综合①②知,,成立,因此,,即,所以.21、(1);(2)在内单调递减,在内单调递增【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 资金入股合作协议
- 两人合伙买房简单协议书范本
- 钢管运输服务协议:2024年度地下车库工程
- 国际贸易销售合同范本完整版
- 员工因自身疾病与公司免责协议保证书 2篇
- 2024版工程居间工程分包合同2篇
- 临时钟点工雇佣协议书
- 废品回收协议书2篇
- 应届生实习合同
- 演出场地租赁合同
- 国开(浙江)2024年秋《中国建筑史(本)》形考作业1-4答案
- 医院检验科实验室生物安全程序文件SOP
- 第9课-隋唐时期的经济、科技与文化-【中职专用】《中国历史》课件(高教版2023基础模块)
- Q∕GDW 11514-2021 变电站智能机器人巡检系统检测规范
- 市心血管重点专科汇报材料
- 机械零件轴测图精品
- 英语《花木兰》短剧剧本
- 入侵报警系统工程施工要求及调试
- 基于PLC的燃油锅炉控制系统设计毕设设计说明书论文
- 小学生垃圾分类(全)(课堂PPT)
- 保险公司绩效考核办法
评论
0/150
提交评论