2023届上海市浦东新区高桥中学高三5月模拟考试自选试题_第1页
2023届上海市浦东新区高桥中学高三5月模拟考试自选试题_第2页
2023届上海市浦东新区高桥中学高三5月模拟考试自选试题_第3页
2023届上海市浦东新区高桥中学高三5月模拟考试自选试题_第4页
2023届上海市浦东新区高桥中学高三5月模拟考试自选试题_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023届上海市浦东新区高桥中学高三5月模拟考试自选试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图是国家统计局公布的年入境游客(单位:万人次)的变化情况,则下列结论错误的是()A.2014年我国入境游客万人次最少B.后4年我国入境游客万人次呈逐渐增加趋势C.这6年我国入境游客万人次的中位数大于13340万人次D.前3年我国入境游客万人次数据的方差小于后3年我国入境游客万人次数据的方差2.在直角中,,,,若,则()A. B. C. D.3.如图,在中,点为线段上靠近点的三等分点,点为线段上靠近点的三等分点,则()A. B. C. D.4.已知平行于轴的直线分别交曲线于两点,则的最小值为()A. B. C. D.5.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A. B. C. D.6.已知,且,则的值为()A. B. C. D.7.已知集合,则()A. B. C. D.8.已知函数,当时,的取值范围为,则实数m的取值范围是()A. B. C. D.9.若复数满足,则对应的点位于复平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知函数,若关于的不等式恰有1个整数解,则实数的最大值为()A.2 B.3 C.5 D.811.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的圆周率近似取为()A. B. C. D.12.如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是()A.甲班的数学成绩平均分的平均水平高于乙班B.甲班的数学成绩的平均分比乙班稳定C.甲班的数学成绩平均分的中位数高于乙班D.甲、乙两班这5次数学测试的总平均分是103二、填空题:本题共4小题,每小题5分,共20分。13.(5分)已知,且,则的值是____________.14.已知正四棱柱的底面边长为,侧面的对角线长是,则这个正四棱柱的体积是____.15.已知数列的前项和为,,则满足的正整数的值为______.16.(x+y)(2x-y)5的展开式中x3y3的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中.(Ⅰ)当时,求函数的单调区间;(Ⅱ)设,求证:;(Ⅲ)若对于恒成立,求的最大值.18.(12分)已知等差数列{an}的前n项和为Sn,且(1)求数列{a(2)求数列{1Sn}的前19.(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下:等级不合格合格得分频数624(1)由该题中频率分布直方图求测试成绩的平均数和中位数;(2)其他条件不变,在评定等级为“合格”的学生中依次抽取2人进行座谈,每次抽取1人,求在第1次抽取的测试得分低于80分的前提下,第2次抽取的测试得分仍低于80分的概率;(3)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为,求的数学期望.20.(12分)已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)当时,求函数在上最小值.21.(12分)随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少有2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(以1小时为计量单位)被每套系统监测出排放超标的概率均为,且各个时间段每套系统监测出排放超标情况相互独立.(1)当时,求某个时间段需要检查污染源处理系统的概率;(2)若每套环境监测系统运行成本为300元/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.22.(10分)的内角、、所对的边长分别为、、,已知.(1)求的值;(2)若,点是线段的中点,,求的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

ABD可通过统计图直接分析得出结论,C可通过计算中位数判断选项是否正确.【详解】A.由统计图可知:2014年入境游客万人次最少,故正确;B.由统计图可知:后4年我国入境游客万人次呈逐渐增加趋势,故正确;C.入境游客万人次的中位数应为与的平均数,大于万次,故正确;D.由统计图可知:前年的入境游客万人次相比于后年的波动更大,所以对应的方差更大,故错误.故选:D.【点睛】本题考查统计图表信息的读取以及对中位数和方差的理解,难度较易.处理问题的关键是能通过所给统计图,分析出对应的信息,对学生分析问题的能力有一定要求.2、C【解析】

在直角三角形ABC中,求得,再由向量的加减运算,运用平面向量基本定理,结合向量数量积的定义和性质:向量的平方即为模的平方,化简计算即可得到所求值.【详解】在直角中,,,,,

若,则故选C.【点睛】本题考查向量的加减运算和数量积的定义和性质,主要是向量的平方即为模的平方,考查运算能力,属于中档题.3、B【解析】

,将,代入化简即可.【详解】.故选:B.【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算、数乘运算,考查学生的运算能力,是一道中档题.4、A【解析】

设直线为,用表示出,,求出,令,利用导数求出单调区间和极小值、最小值,即可求出的最小值.【详解】解:设直线为,则,,而满足,那么设,则,函数在上单调递减,在上单调递增,所以故选:.【点睛】本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题.5、A【解析】

阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.【详解】因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.故选:A.【点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.6、A【解析】

由及得到、,进一步得到,再利用两角差的正切公式计算即可.【详解】因为,所以,又,所以,,所以.故选:A.【点睛】本题考查三角函数诱导公式、二倍角公式以及两角差的正切公式的应用,考查学生的基本计算能力,是一道基础题.7、A【解析】

考虑既属于又属于的集合,即得.【详解】.故选:【点睛】本题考查集合的交运算,属于基础题.8、C【解析】

求导分析函数在时的单调性、极值,可得时,满足题意,再在时,求解的x的范围,综合可得结果.【详解】当时,,令,则;,则,∴函数在单调递增,在单调递减.∴函数在处取得极大值为,∴时,的取值范围为,∴又当时,令,则,即,∴综上所述,的取值范围为.故选C.【点睛】本题考查了利用导数分析函数值域的方法,考查了分段函数的性质,属于难题.9、D【解析】

利用复数模的计算、复数的除法化简复数,再根据复数的几何意义,即可得答案;【详解】,对应的点,对应的点位于复平面的第四象限.故选:D.【点睛】本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题.10、D【解析】

画出函数的图象,利用一元二次不等式解法可得解集,再利用数形结合即可得出.【详解】解:函数,如图所示当时,,由于关于的不等式恰有1个整数解因此其整数解为3,又∴,,则当时,,则不满足题意;当时,当时,,没有整数解当时,,至少有两个整数解综上,实数的最大值为故选:D【点睛】本题主要考查了根据函数零点的个数求参数范围,属于较难题.11、C【解析】

将圆锥的体积用两种方式表达,即,解出即可.【详解】设圆锥底面圆的半径为r,则,又,故,所以,.故选:C.【点睛】本题利用古代数学问题考查圆锥体积计算的实际应用,考查学生的运算求解能力、创新能力.12、D【解析】

计算两班的平均值,中位数,方差得到正确,两班人数不知道,所以两班的总平均分无法计算,错误,得到答案.【详解】由题意可得甲班的平均分是104,中位数是103,方差是26.4;乙班的平均分是102,中位数是101,方差是37.6,则A,B,C正确.因为甲、乙两班的人数不知道,所以两班的总平均分无法计算,故D错误.故选:.【点睛】本题考查了茎叶图,平均值,中位数,方差,意在考查学生的计算能力和应用能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由于,且,则,得,则.14、【解析】Aa设正四棱柱的高为h得到故得到正四棱柱的体积为故答案为54.15、6【解析】

已知,利用,求出通项,然后即可求解【详解】∵,∴当时,,∴;当时,,∴,故数列是首项为-2,公比为2的等比数列,∴.又,∴,∴,∴.【点睛】本题考查通项求解问题,属于基础题16、40【解析】

先求出的展开式的通项,再求出即得解.【详解】设的展开式的通项为,令r=3,则,令r=2,则,所以展开式中含x3y3的项为.所以x3y3的系数为40.故答案为:40【点睛】本题主要考查二项式定理求指定项的系数,意在考查学生对这些知识的理解掌握水平.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)函数的单调增区间为,单调减区间为;(Ⅱ)证明见解析;(Ⅲ).【解析】

(Ⅰ)利用二次求导可得,所以在上为增函数,进而可得函数的单调增区间为,单调减区间为;(Ⅱ)利用导数可得在区间上存在唯一零点,所以函数在递减,在,递增,则,进而可证;(Ⅲ)条件等价于对于恒成立,构造函数,利用导数可得的单调性,即可得到的最小值为,再次构造函数(a),,利用导数得其单调区间,进而求得最大值.【详解】(Ⅰ)当时,,则,所以,又因为,所以在上为增函数,因为,所以当时,,为增函数,当时,,为减函数,即函数的单调增区间为,单调减区间为;(Ⅱ),则令,则(1),,所以在区间上存在唯一零点,设零点为,则,且,当时,,当,,,所以函数在递减,在,递增,,由,得,所以,由于,,从而;(Ⅲ)因为对于恒成立,即对于恒成立,不妨令,因为,,所以的解为,则当时,,为增函数,当时,,为减函数,所以的最小值为,则,不妨令(a),,则(a),解得,所以当时,(a),(a)为增函数,当时,(a),(a)为减函数,所以(a)的最大值为,则的最大值为.【点睛】本题考查利用导数研究函数的单调性和最值,以及函数不等式恒成立问题的解法,意在考查学生等价转化思想和数学运算能力,属于较难题.18、(1)an=2n【解析】

(1)先设出数列的公差为d,结合题中条件,求出首项和公差,即可得出结果.(2)利用裂项相消法求出数列的和.【详解】解:(1)设公差为d的等差数列{an}且a1+a则有:a1解得:a1=3,所以:a(2)由于:an所以:Sn则:1S则:Tn=1【点睛】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型.19、(1)64,65;(2);(3).【解析】

(1)根据频率分布直方图及其性质可求出,平均数,中位数;(2)设“第1次抽取的测试得分低于80分”为事件,“第2次抽取的测试得分低于80分”为事件,由条件概率公式可求出;(3)从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈,其中“不合格”的学生数为,“合格”的学生数为6;由题意可得,5,10,15,1,利用“超几何分布”的计算公式即可得出概率,进而得出分布列与数学期望.【详解】由题意知,样本容量为,.(1)平均数为,设中位数为,因为,所以,则,解得.(2)由题意可知,分数在内的学生有24人,分数在内的学生有12人.设“第1次抽取的测试得分低于80分”为事件,“第2次抽取的测试得分低于80分”为事件,则,所以.(3)在评定等级为“合格”和“不合格”的学生中用分层抽样的方法抽取10人,则“不合格”的学生人数为,“合格”的学生人数为.由题意可得的所有可能取值为0,5,10,15,1.,.所以的分布列为0510151.【点睛】本题主要考查了频率分布直方图的性质、分层抽样、超几何分布列及其数学期望,考查了计算能力,属于中档题.20、(Ⅰ)见解析;(Ⅱ)当时,函数的最小值是;当时,函数的最小值是【解析】

(1)求出导函数,并且解出它的零点x=,再分区间讨论导数的正负,即可得到函数f(x)的单调区间;

(2)分三种情况加以讨论,结合函数的单调性与函数值的大小比较,即可得到当0<a<ln2时,函数f(x)的最小值是-a;当a≥ln2时,函数f(x)的最小值是ln2-2a.【详解】函数的定义域

为.

因为,令,可得;

当时,;当时,,综上所述:可知函数的单调递增区间为,单调递减区间为当,即时,函数在区间上是减函数,

的最小值是当,即时,函数在区间上是增函数,的最小值是当,即时,函数在上是增函数,在上是减函数.

又,

当时,的最小值是;

当时,的最小值为综上所述,结论为当时,函数的最小值是;

当时,函数的最小值是.【点睛】求函数极值与最值的步骤:(1)确定函数的定义域;(2)求导数;(3)解方程求出函数定义域内的所有根;(4)列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.(5)如果只有一个极值点,则在该

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论