版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省泉州市晋江四校2023年高二上数学期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在三棱锥中,,,,若,,则()A. B.C. D.2.设函数的图象为C,则下面结论中正确的是()A.函数的最小正周期是B.图象C关于点对称C.函数在区间上是增函数D.图象C可由函数的图象向右平移个单位得到3.将正整数1,2,3,4,…按如图所示的方式排成三角形数组,则第19行从左往右数第5个数是()A.381 B.361C.329 D.4004.执行如图所示的程序框图,则输出S的值是()A. B.C. D.5.已知直线与直线垂直,则()A. B.C. D.6.倾斜角为45°,在轴上的截距是的直线方程为()A. B.C. D.7.如图已知正方体,点是对角线上的一点且,,则()A.当时,平面 B.当时,平面C.当为直角三角形时, D.当的面积最小时,8.已知向量,且,则()A. B.C. D.9.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种 B.120种C.240种 D.480种10.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中学生中抽取容量为50的样本,则应从高三年级抽取的学生数为()A.10 B.15C.20 D.3011.2019年末,武汉出现新型冠状病毒肺炎(COVID—19)疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为p(0<p<1)且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为f(p),当p=p0时,f(p)最大,则p0=()A. B.C. D.12.执行如图所示的程序框图,若输出的的值为,则判断框中应填入()A.? B.?C.? D.?二、填空题:本题共4小题,每小题5分,共20分。13.已知为坐标原点,、分别是双曲线的左、右顶点,是双曲线上不同于、的动点,直线、与轴分别交于点、两点,则________14.设正方形的边长是,在该正方形区域内随机取一个点,则此点到点的距离大于的概率是_____15.直线过抛物线的焦点F,且与C交于A,B两点,则___________.16.已知双曲线的左、右焦点分别为,双曲线左支上点满足,则的面积为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,直线与椭圆C相切于点(1)求椭圆C方程;(2)已知直线与椭圆C交于不同的两点M,N,与直线交于点Q(P,Q,M,N均不重合),记的斜率分别为,若①求△面积的范围,②证明:为定值18.(12分)已知双曲线:的两条渐近线所成的锐角为且点是上一点(1)求双曲线的标准方程;(2)若过点的直线与交于,两点,点能否为线段的中点?并说明理由19.(12分)已知椭圆F:经过点且离心率为,直线和是分别过椭圆F的左、右焦点的两条动直线,它们与椭圆分别相交于点A、B和C、D,O为坐标原点,直线AB和直线CD相交于M.记直线的斜率分别为,且(1)求椭圆F的标准方程(2)是否存在定点P,Q,使得为定值.若存在,请求出P、Q的坐标,若不存在,请说明理由20.(12分)为了符合国家制定的工业废气排放标准,某工厂在国家科研部门的支持下,进行技术攻关,采用新工艺,对其排放的废气中的二氧化硫转化为一种可利用的化工产品.已知该工厂每月的处理量最少为300吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化硫得到可利用的化工产品价值为200元(1)该工厂每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该工厂每月能否获利?如果获利,求出最大利润:如果不获利,则国家每月至少应补贴多少元才能使工厂不亏损?21.(12分)将离心率相同的两个椭圆如下放置,可以形成一个对称性很强的几何图形,现已知.(1)若在第一象限内公共点的横坐标为1,求的标准方程;(2)假设一条斜率为正的直线与依次切于两点,与轴正半轴交于点,试求的最大值及此时的标准方程.22.(10分)已知向量,,且.(1)求满足上述条件的点M(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m(k≠0)相交于不同的两点P,Q,点A(0,1),当|AP|=|AQ|时,求实数m的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据空间向量的基本定理及向量的运算法则计算即可得出结果.【详解】连接,因为,所以,因为,所以,所以,故选:B2、B【解析】化简函数解析式,求解最小正周期,判断选项A,利用整体法求解函数的对称中心和单调递增区间,判断选项BC,再由图象变换法则判断选项D.【详解】,所以函数的最小正周期为,A错;令,得,所以函数图象关于点对称,B正确;由,得,所以函数在上为增函数,在上为减函数,C错;函数的图象向右平移个单位得,D错.故选:B3、C【解析】观察规律可知,从第一行起,每一行最后一个数是连续的完全平方数,据此容易得出答案.【详解】由图中数字排列规律可知:第1行从左往右最后1个数是,第2行从左往右最后1个数是,第3行从左往右最后1个数是,……第18行从左往右最后1个数为,第19行从左往右第5个数是故选:C.4、C【解析】按照程序框图的流程进行计算.【详解】,故输出S的值为.故选:C5、D【解析】根据互相垂直两直线的斜率关系进行求解即可.【详解】由,所以直线的斜率为,由,所以直线的斜率为,因为直线与直线垂直,所以,故选:D6、B【解析】先由倾斜角为45°,可得其斜率为1,再由轴上的截距是,可求出直线方程【详解】解:因为直线的倾斜角为45°,所以直线的斜率为,因为直线在轴上的截距是,所以所求的直线方程为,即,故选:B7、D【解析】建立空间直角坐标系,利用空间向量法一一计算可得;【详解】解:由题可知,如图令正方体的棱长为1,建立空间直角坐标系,则,,,,,,,所以,因为,所以,所以,,,,设平面的法向量为,则,令,则,,所以对于A:若平面,则,则,解得,故A错误;对于B:若平面,则,即,解得,故B错误;当为直角三角形时,有,即,解得或(舍去),故C错误;设到的距离为,则,当的面积最小时,,故正确故选:8、A【解析】利用空间向量共线的坐标表示即可求解.【详解】由题意可得,解得,所以.故选:A9、C【解析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,故选:C.【点睛】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.10、C【解析】根据抽取比例乘以即可求解.【详解】由题意可得应从高三年级抽取的学生数为,故选:C.11、A【解析】解设事件A为:检测了5人确定为“感染高危户”,设事件B为:检测了6人确定为“感染高危户”,则,再利用基本不等式法求解.【详解】解:设事件A为:检测了5人确定为“感染高危户”,设事件B为:检测了6人确定为“感染高危户”,则,,所以,令,则,,当且仅当,即时,等号成立,即,故选:A12、C【解析】本题为计算前项和,模拟程序,实际计算求和即可得到的值.【详解】由题意可知:输出的的值为数列的前项和.易知,则,令,解得.即前7项的和.为故判断框中应填入“?”.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】求得坐标,设出点坐标,求得直线的方程,由此求得两点的纵坐标,进而求得.【详解】依题意,设,则,直线的方程为,则,直线的方程为,则,所以.故答案为:14、【解析】先求出正方形的面积,然后求出动点到点的距离所表示的平面区域的面积,最后根据几何概型计算公式求出概率.【详解】正方形的面积为,如下图所示:阴影部分的面积为:,在正方形内,阴影外面部分的面积为,则在该正方形区域内随机取一个点,则此点到点的距离大于的概率是.【点睛】本题考查了几何概型的计算公式,正确求出阴影部分的面积是解题的关键.15、8【解析】由题意,求出,然后联立直线与抛物线方程,由韦达定理及即可求解.【详解】解:因为抛物线的焦点坐标为,又直线过抛物线的焦点F,所以,抛物线的方程为,由,得,所以,所以.故答案为:8.16、3【解析】由双曲线方程可得,利用双曲线定义,以及直角三角形的勾股定理可得,由此求得答案.【详解】由双曲线的左、右焦点分别为,双曲线左支上点满足,可得:,则,且,故,所以,故,故答案为:3三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)①;②证明见解析.【解析】(1)根据椭圆离心率和椭圆经过的点建立方程组,求解方程组可得椭圆的方程;(2)先根据相切求出直线的斜率,结合可得,进而应用弦长公式、点线距离公式及三角形面积公式求△面积的范围,再逐个求解,,然后可证结论.【小问1详解】由题意,解得,故椭圆C的方程为.【小问2详解】设直线为,联立得:,因为直线与椭圆C相切,则判别式,即,整理得,∴,故直线为,又,可得,设直线为,联立方程组,解得,故Q为,联立方程组,化简得设,由得:,且,①,到直线的距离为,∴,令,∴.②由上,故,于是为定值.【点睛】直线与椭圆的相切问题一般是联立方程,结合判别式为零求解;定值问题的求解一般结合目标式中的项,逐个求解,代入验证即可.18、(1);(2)点不能为线段的中点,理由见解析.【解析】(1)由渐近线夹角求得一个斜率,再代入点的坐标,然后可解得得双曲线方程;(2)设直线方程为(斜率不存在时另说明),与双曲线方程联立,消元后应用韦达定理,结合中点坐标公式求得,然后难验证直线与双曲线是否相交即可得【详解】解:(1)由题意知,双曲线的渐近线的倾斜角为30°或60°,即或当时,的标准方程为,代入,无解当时,的标准方程为,代入,解得故的标准方程为(2)不能是线段的中点设交点,,当直线的斜率不存在时,直线与双曲线只有一个交点,不符合题意.当直线的斜率存在时,设直线方程为,联立方程组,整理得,则,由得,将代入判别式,所以满足题意的直线也不存在所以点不能为线段的中点19、(1);(2)存在点,使得为定值.【解析】(1)设,,,结合条件即求;(2)由题可设直线方程,利用韦达定理法可得,再结合条件可得点的轨迹方程为,然后利用椭圆的定义即得结论.【小问1详解】设,,,椭圆方程为:,椭圆过点,,解得t=1,所以椭圆F的方程是【小问2详解】由题可得焦点的坐标分别为,当直线AB或CD的斜率不存在时,点M的坐标为或,当直线AB和CD的斜率都存在时,设斜率分别为,点,直线AB为,联立,得则,,同理可得,,因为,所以,化简得由题意,知,所以设点,则,所以,化简得,当直线或的斜率不存在时,点M的坐标为或,也满足此方程所以点在椭圆上,根据椭圆定义可知,存在定点,使得为定值【点睛】关键点点睛:本题的关键是利用韦达定理法及题设条件求出点M的轨迹方程,再结合椭圆的定义,从而问题得到解决.20、(1)600吨(2)该工厂不获利,且需要国家每月至少补贴52500元才能使工厂不亏损【解析】(1)设该工厂每吨平均处理成本为z,,利用基本不等式求最值可得答案;(2)设该工厂每月的利润为,利用配方求最值可得答案.【小问1详解】设该工厂每吨平均处理成本为z,,∴,当且仅当,即时取等号,当时,每吨平均处理成本最低.【小问2详解】设该工厂每月的利润为,则,∴,当时,,所以该工厂不获利,且需要国家每月至少补贴52500元才能使工厂不亏损.21、(1)(2);【解析】(1)设,将点代入得出的标准方程;(2)联立与直线的方程,得出两点的坐标,进而得出,再结合导数得出的最大值及此时的标准方程.【小问1详解】由题意得:在第一象限的公共点为设,则有:的标准方程为:;【小问2详解】设y=kx+m则①,则②,,,又,由①有代入①有,令,则令,在单调递增,在单调递减,此时,则,代入②得,综
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 娃娃机维修服务合同(二零二五)3篇
- 2025年厂区绿化养护与可持续发展战略合同样本3篇
- 二零二五年度网络安全机房地砖铺设与散热设计合同3篇
- 2025年度冷链物流产品运输质量保证合同4篇
- 二零二四年度2024年绿化苗木种植施工劳务分包合同2篇
- 2025年度房屋租赁合同及租金支付协议4篇
- 2025版高端电子设备买卖及试用体验服务协议4篇
- 进阶办公软件的课程设计
- 二零二五年高清监控设备采购合同范本3篇
- 2025年度厂房智能化改造施工合同样本3篇
- 2025年北京生命科技研究院招聘笔试参考题库含答案解析
- 九年级数学上册期末复习综合测试题(含答案)
- 2025年月度工作日历含农历节假日电子表格版
- 开展个人极端案事件防范工作总结【四篇】
- 2024中国智能驾驶城区NOA功能测评报告-2024-12-智能网联
- 山西省吕梁市2023-2024学年高二上学期期末考试数学试题(解析版)
- 2024年市场运营部职责样本(3篇)
- 2024体育活动区铺沙子(合同)协议
- 《中华人民共和国机动车驾驶人科目一考试题库》
- 2024年VB程序设计:从入门到精通
- 2024年故宫文化展览计划:课件创意与呈现
评论
0/150
提交评论