版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省海滨学校、港尾中学2023年数学高二上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,若.则的值是()A. B.C. D.2.甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军.”对乙说:“你当然不会是最差的.”从这两个回答分析,5人的名次排列方式共有()种A.54 B.72C.96 D.1203.在数列中,,,则()A. B.C. D.4.函数在点处的切线方程的斜率是()A. B.C. D.5.已知数列中,,(),则等于()A. B.C. D.26.甲、乙、丙、丁四位同学一起去找老师询问成语竞赛的成绩.老师说:你们四人中有位优秀,位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙、丁可以知道自己的成绩 B.乙、丁可以知道对方的成绩C.乙可以知道四人的成绩 D.丁可以知道四人的成绩7.下列说法正确的有()个.①向量,,,不一定成立;②圆与圆外切③若,则数是数,的等比中项.A.1 B.2C.3 D.08.如图,已知最底层正方体的棱长为a,上层正方体下底面的四个顶点是下层正方体上底面各边的中点,依此方法一直继续下去,则所有这些正方体的体积之和将趋近于()A. B.C. D.9.在平面直角坐标系xOy中,双曲线(,)的左、右焦点分别为,,点M是双曲线右支上一点,,且,则双曲线的离心率为()A. B.C. D.10.抛物线有一条重要的性质:平行于抛物线的轴的光线,经过抛物线上的一点反射后经过它的焦点.反之,从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.已知抛物线,从点发出一条平行于x轴的光线,经过抛物线两次反射后,穿过点,则光线从A出发到达B所走过的路程为()A.8 B.10C.12 D.1411.椭圆离心率是()A. B.C. D.12.抛物线型太阳灶是利用太阳能辐射的一种装置.当旋转抛物面的主光轴指向太阳的时候,平行的太阳光线入射到旋转抛物面表面,经过反光材料的反射,这些反射光线都从它的焦点处通过,形成太阳光线的高密集区,抛物面的焦点在它的主光轴上.如图所示的太阳灶中,灶深CD即焦点到灶底(抛物线的顶点)的距离为1m,则灶口直径AB为()A.2m B.3mC.4m D.5m二、填空题:本题共4小题,每小题5分,共20分。13.函数,其导函数为函数,则__________14.已知函数在上单调递减,则的取值范围是______.15.已知随机变量X服从正态分布,若,则______16.设抛物线的准线方程为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)给出以下三个条件:①;②,,成等比数列;③.请从这三个条件中任选一个,补充到下面问题中,并完成作答.若选择多个条件分别作答,以第一个作答计分已知公差不为0的等差数列的前n项和为,,______(1)求数列的通项公式;(2)若,令,求数列的前n项和18.(12分)如图,在四棱锥中,平面平面,,,,,(Ⅰ)求证:;(Ⅱ)求二面角的余弦值;(Ⅲ)若点在棱上,且平面,求线段的长19.(12分)已知椭圆的右顶点为,上顶点为.离心率为,.(1)求椭圆的标准方程;(2)若,是椭圆上异于长轴端点的两点(斜率不为0),已知直线,且,垂足为,垂足为,若,且的面积是面积的5倍,求面积的最大值.20.(12分)已知函数.(1)求的单调区间;(2)求函数在区间上的最大值与最小值.21.(12分)在中,内角所对的边长分别为,是1和的等差中项(1)求角;(2)若的平分线交于点,且,求的面积22.(10分)已知,,分别是锐角内角,,的对边,,.(1)求的值;(2)若的面积为,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由,转化为,再由求解.【详解】因为数列满足,所以,即,因为,所以,所以,故选:D2、A【解析】根据题意,分2种情况讨论:①、甲是最后一名,则乙可以为第二、三、四名,剩下的三人安排在其他三个名次,②、甲不是最后一名,甲乙需要排在第二、三、四名,剩下的三人安排在其他三个名次,由加法原理计算可得答案【详解】根据题意,甲乙都没有得到冠军,而乙不是最后一名,分2种情况讨论:①甲是最后一名,则乙可以为第二、三、四名,即乙有3种情况,剩下的三人安排在其他三个名次,有种情况,此时有种名次排列情况;②甲不是最后一名,甲乙需要排在第二、三、四名,有种情况,剩下的三人安排在其他三个名次,有种情况,此时有种名次排列情况;则一共有种不同的名次情况,故选:A3、A【解析】根据已知条件,利用累加法得到的通项公式,从而得到.【详解】由,得,所以,所以.故选:A.4、D【解析】求解导函数,再由导数的几何意义得切线的斜率.【详解】求导得,由导数的几何意义得,所以函数在处切线的斜率为.故选:D5、D【解析】由已知条件可得,,…,即是周期为3的数列,即可求.【详解】由题设,知:,,,…,∴是周期为3的数列,而的余数为1,∴.故选:D.6、A【解析】分析可知乙、丙的成绩中必有位优秀、位良好,结合题意进行推导,可得出结论.【详解】由于个人中的成绩中有位优秀,位良好,甲知道乙、丙的成绩,还是不知道自己的成绩,则乙、丙的成绩必有位优秀、位良好,甲、丁的成绩中必有位优秀、位良好,因为给乙看丙的成绩,则乙必然知道自己的成绩,丁知道甲的成绩后,必然知道自己的成绩.故选:A.7、A【解析】由向量数量积为实数,以及向量共线定理,即可判断①;求出圆心距,即可判断两圆位置关系,从而判断②;取,即可判断③【详解】对于①,与共线,与共线,故不一定成立,故①正确;对于②,圆的圆心为,半径为,圆可变形为,故其圆心为,半径为,则圆心距,由,所以两圆相交,故②错误;对于③,若,取,则数不是数的等比中项,故③错误故选:A8、D【解析】由已知可判断出所有这些正方体的体积构成首项为,公比为的等比数列,然后求和可得答案.【详解】最底层上面第一个正方体的棱长为,其体积为,上面第二个正方体的棱长为,其体积为,上面第三个正方体的棱长为,其体积为,所有这些正方体的体积构成首项为,公比为的等比数列,其前项和为,当,,所以所有这些正方体的体积之和将趋近于.故选:D.9、A【解析】本题考查双曲线的定义、几何性质及直角三角形的判定即可解决.【详解】因为,,所以在中,边上的中线等于的一半,所以.因为,所以可设,,则,解得,所以,由双曲线的定义得,所以双曲线的离心率故选:A10、C【解析】利用抛物线的定义求解.【详解】如图所示:焦点为,设光线第一次交抛物线于点,第二次交抛物线于点,过焦点F,准线方程为:,作垂直于准线于点,作垂直于准线于点,则,,,,故选:C11、C【解析】将方程转化为椭圆的标准方程,求得a,c,再由离心率公式求得答案.【详解】解:由得,所以,则,所以椭圆的离心率,故选:C.12、C【解析】建立如图所示的平面直角坐标系,设抛物线的方程为,根据是抛物线的焦点,求得抛物线的方程,进而求得的长.【详解】由题意,建立如图所示的平面直角坐标系,O与C重合,设抛物线的方程为,由题意可得是抛物线的焦点,即,可得,所以抛物线的方程为,当时,,所以.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据解析式,可求得解析式,代入数据,即可得答案.详解】∵,∴,∴.故答案为:.14、【解析】先求导,求出函数的单调递减区间,由即可求解.【详解】,令,得,即的单调递减区间是,又在上单调递减,可得,即.故答案为:.15、##25【解析】根据正态分布曲线的对称性即可求得结果.【详解】,,又,,.故答案为:.16、【解析】由题意结合抛物线的标准方程确定其准线方程即可.【详解】由抛物线方程可得,则,故准线方程为.故答案为【点睛】本题主要考查由抛物线方程确定其准线方法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)若选①,则根据等差数列的前n项和公式,结合,求得公差,可得答案;若选②,则根据,,成等比数列,列出方程,结合,求得公差,可得答案;若选③,则根据,列出方程,结合,求得公差,可得答案;(2)由(1)可得的表达式,利用错位相减法,求得答案.【小问1详解】设数列的公差为d选择①,由题意得,又,则,所以;选择②,由,,成等比数列,得,即,解得,或(舍去),所以;选择③,由,得,解得,所以【小问2详解】由题意知,∴①②①-②得∴,即.18、(Ⅰ)见解析.(Ⅱ).(Ⅲ).【解析】第一问根据面面垂直的性质和线面垂直的性质得出线线垂直的结论,注意在书写的时候条件不要丢就行;第二问建立空间直角坐标系,利用法向量所成角的余弦值来求得二面角的余弦值;第三问利用向量共线的关系,得出向量的坐标,根据线面平行得出向量垂直,利用其数量积等于零,求得结果.(Ⅰ)证明:因为平面⊥平面,且平面平面,因为⊥,且平面所以⊥平面因为平面,所以⊥.(Ⅱ)解:在△中,因为,,,所以,所以⊥.所以,建立空间直角坐标系,如图所示所以,,,,,,.易知平面的一个法向量为.设平面的一个法向量为,则,即,令,则.设二面角的平面角为,可知为锐角,则,即二面角的余弦值为(Ⅲ)解:因为点在棱,所以,因为,所以,.又因为平面,为平面的一个法向量,所以,即,所以所以,所以.19、(1)(2)面积的最大值为【解析】(1)由离心率为,,得,解得,,,进而可得答案(2)设直线的方程为,,,,,联立直线与椭圆的方程,结合韦达定理可得,,由弦长公式可得,点到直线的距离,则,,由的面积是面积的5倍,解得,再计算的最大值,即可【小问1详解】解:因为离心率为,,所以,解得,,,所以【小问2详解】解:设直线的方程为,,,,,联立,得,所以,,所以,点到直线的距离,所以,,因为的面积是面积的5倍,所以所以或,又因为,是椭圆上异于长轴端点的两点,所以,所以,令,所以,因为在上单调递增,所以,(当时,取等号),所以面积的最大值为.20、(1)单调递增区间为;单调减区间为和;(2);.【解析】(1)求出导函数,令,求出单调递增区间;令,求出单调递减区间.(2)求出函数的单调区间,利用函数的单调性即可求解.【详解】1函数的定义域是R,,令,解得令,解得或,所以的单调递增区间为,单调减区间为和;2由在单调递减,在单调递增,所以,而,,故最大值是.21、(1);(2)【解析】(1)根据是1和的等差中项得到,再利用正弦定理结合商数关系,两角和与差的三角函数化简得到求解;(2)由和求得b,c的关系,再结合余弦定理求解即可.【详解】(1)由已知得,在中,由正弦定理得,化简得,因为,所以,所以;(2)由正弦定理得,又,即,由余弦定理得,所以,所以【点睛】方法点睛:在解有关三角形的题目
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论