版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市通州区2023年高二上数学期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.不等式的解集为()A. B.C.或 D.或2.双曲线的左焦点到其渐近线的距离是()A. B.C. D.3.已知函数的导数为,且满足,则()A. B.C. D.4.已知,且,则实数的值为()A. B.3C.4 D.65.用3,4,5,6,7,9这6个数组成没有重复数字的六位数,下列结论正确的有()A.在这样的六位数中,奇数共有480个B.在这样的六位数中,3、5、7、9相邻的共有120个C.在这样的六位数中,4,6不相邻的共有504个D.在这样六位数中,4个奇数从左到右按照从小到大排序的共有60个6.已知正项等比数列的前项和为,且,则的最小值为()A. B.C. D.7.抛物线有一条重要的性质:平行于抛物线的轴的光线,经过抛物线上的一点反射后经过它的焦点.反之,从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.已知抛物线,从点发出一条平行于x轴的光线,经过抛物线两次反射后,穿过点,则光线从A出发到达B所走过的路程为()A.8 B.10C.12 D.148.直线y=x+1与圆x2+y2=1的位置关系为A.相切B.相交但直线不过圆心C.直线过圆心D.相离9.双曲线的焦点坐标是()A. B.C. D.10.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=011.如图,某圆锥的轴截面是等边三角形,点是底面圆周上的一点,且,点是的中点,则异面直线与所成角的余弦值是()A. B.C. D.12.已知为虚数单位,复数是纯虚数,则()A. B.4C.3 D.2二、填空题:本题共4小题,每小题5分,共20分。13.等差数列的前项和为,已知,则__.14.已知点,,其中,若线段的中点坐标为,则直线的方程为________15.在空间直角坐标系中,已知点A,若点P满足,则_______16.抛物线的焦点到准线的距离是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在棱长为2的正方体中,E,F分别为AB,BC上的动点,且.(1)求证:;(2)当时,求点A到平面的距离.18.(12分)某车间打算购买2台设备,该设备有一个易损零件,在购买设备时可以额外购买这种易损零件作为备件,价格为每个100元.在设备使用期间,零件损坏,备件不足再临时购买该零件,价格为每个300元.在使用期间,每台设备需要更换的零件个数的分布列为567.表示2台设备使用期间需更换的零件数,代表购买2台设备的同时购买易损零件的个数.(1)求的分布列;(2)以购买易损零件所需费用的期望为决策依据,试问在和中,应选哪一个?19.(12分)已知圆C的圆心在直线上,且经过点和(1)求圆C的标准方程;(2)若过点的直线l与圆C交于A,B两点,且,求直线l的方程20.(12分)已知是椭圆的两个焦点,P为C上一点,O为坐标原点(1)若为等边三角形,求C的离心率;(2)如果存在点P,使得,且的面积等于16,求b的值和a的取值范围.21.(12分)某品牌餐饮公司准备在10个规模相当的地区开设加盟店,为合理安排各地区加盟店的个数,先在其中5个地区试点,得到试点地区加盟店个数分别为1,2,3,4,5时,单店日平均营业额(万元)的数据如下:加盟店个数(个)12345单店日平均营业额(万元)10.910.297.871(参考数据及公式:,,线性回归方程,其中,.)(1)求单店日平均营业额(万元)与所在地区加盟店个数(个)的线性回归方程;(2)根据试点调研结果,为保证规模和效益,在其他5个地区,该公司要求同一地区所有加盟店的日平均营业额预计值总和不低于35万元,求一个地区开设加盟店个数的所有可能取值;(3)小赵与小王都准备加入该公司的加盟店,根据公司规定,他们只能分别从其他五个地区(加盟店都不少于2个)中随机选一个地区加入,求他们选取的地区相同的概率.22.(10分)已知在公差不为0的等差数列中,,且构成等比数列的前三项(1)求数列,的通项公式;(2)设数列___________,求数列的前项和请在①;②;③这三个条件中选择一个,补充在上面的横线上,并完成解答
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先将分式不等式转化为一元二次不等式,然后求解即可【详解】由,得,解得,所以原不等式的解集为,故选:A2、A【解析】求出双曲线焦点坐标与渐近线方程,利用点到直线的距离公式可求得结果.【详解】在双曲线中,,,,所以,该双曲线的左焦点坐标为,渐近线方程为,即,因,该双曲线的左焦点到渐近线的距离为.故选:A3、C【解析】首先求出,再令即可求解.【详解】由,则,令,则,所以.故选:C【点睛】本题主要考查了基本初等函数的导数以及导数的基本运算法则,属于基础题.4、B【解析】根据给定条件利用空间向量垂直的坐标表示计算作答.详解】因,且,则有,解得,所以实数的值为3.故选:B5、A【解析】A选项,特殊位置优先考虑求出这样的六位数中,奇数个数;B选项,相邻问题捆绑法求解;C选项,不相邻问题插空法求解;D选项,定序问题使用倍缩法求解.【详解】用3,4,5,6,7,9这6个数组成没有重复数字的六位数,个位为3,5,7,9中的一位,有种,其余五个数位上的数字进行全排列,有种,综上:在这样的六位数中,奇数共有个,A正确;在这样的六位数中,3、5、7、9相邻,将3、5、7、9捆绑,有种排法,再与4,6进行全排列,故共有个,B错误;在这样的六位数中,4,6不相邻,先将3、5、7、9进行全排列,再从五个位置中任选两个将4,6排列,综上共有个,C错误;在这样的六位数中,4个奇数从左到右按照从小到大排序的共有个,D错误.故选:A6、B【解析】设等比数列的公比为,则,由可得,可得出,利用基本不等式可求得结果.【详解】设等比数列的公比为,则,因为,则,所以,,则,当且仅当时,等号成立.故选:B.7、C【解析】利用抛物线的定义求解.【详解】如图所示:焦点为,设光线第一次交抛物线于点,第二次交抛物线于点,过焦点F,准线方程为:,作垂直于准线于点,作垂直于准线于点,则,,,,故选:C8、B【解析】求出圆心到直线的距离d,与圆的半径r比较大小即可判断出直线与圆的位置关系,同时判断圆心是否在直线上,即可得到正确答案解:由圆的方程得到圆心坐标(0,0),半径r=1则圆心(0,0)到直线y=x+1的距离d==<r=1,把(0,0)代入直线方程左右两边不相等,得到直线不过圆心所以直线与圆的位置关系是相交但直线不过圆心故选B考点:直线与圆的位置关系9、B【解析】根据双曲线的方程,求得,结合双曲线的几何性质,即可求解.【详解】由题意,双曲线,可得,所以,且双曲线的焦点再轴上,所以双曲线的焦点坐标为.故选:B.10、A【解析】设出直线方程,利用待定系数法得到结果.【详解】设与直线平行的直线方程为,将点代入直线方程可得,解得则所求直线方程为.故A正确【点睛】本题主要考查两直线的平行问题,属容易题.两直线平行倾斜角相等,所以斜率相等或均不存在.所以与直线平行的直线方程可设为11、C【解析】建立空间直角坐标系,分别得到,然后根据空间向量夹角公式计算即可.【详解】以过点且垂直于平面的直线为轴,直线,分别为轴,轴,建立如图所示的空间直角坐标系.不妨设,则根据题意可得,,,,所以,,设异面直线与所成角为,则.故选:C.12、C【解析】化简复数得,由其为纯虚数求参数a,进而求的模即可.【详解】由纯虚数,∴,解得:,则,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据等差数列的求和公式和等差数列的性质即可求出.【详解】因为等差数列的前项和为,,则,故答案为:33.【点睛】本题考查了等差数列的求和公式和等差数列的性质,属于基础题.14、【解析】根据中点坐标公式求出,再根据直线的两点式方程即可得出答案.【详解】解:由,,得线段的中点坐标为,所以,解得,所以直线的方程为,即.故答案为:.15、【解析】设,表示出,,根据即可得到方程组,解得、、,即可求出的坐标,即可得到的坐标,最后根据向量模的坐标表示计算可得;【详解】解:设,所以,,因为,所以,所以,解得,即,所以,所以;故答案为:16、4【解析】由y2=2px=8x知p=4,又焦点到准线的距离就是p,所以焦点到准线的距离为4.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)如图,以为轴,为轴,为轴建立空间直角坐标系,利用空间向量法分别求出和,再证明即可;(2)利用空间向量的数量积求出平面的法向量,结合求点到面距离的向量法即可得出结果.【小问1详解】证明:如图,以为轴,为轴,为轴,建立空间直角坐标系,则,,,,所以,,所以,故,所以;【小问2详解】当时,,,,,则,,,设是平面的法向量,则由,解得,取,得,设点A到平面的距离为,则,所以点A到平面的距离为.18、(1)答案见解析;(2)应选择.【解析】(1)由每台设备需更换零件个数的分布列求出的所有可能值,并求出对应的概率即可得解.(2)分别求出和时购买零件所需费用的期望,比较大小即可作答.【小问1详解】的可能取值为10,11,12,13,14,,,,,,则的分布列为:10111213140.090.30.370.20.04【小问2详解】记为当时购买零件所需费用,,,,,元,记为当时购买零件所需费用,,,,元,显然,所以应选择.19、(1)(2)或【解析】(1)点和的中垂线经过圆心,两直线联立方程得圆心坐标,再利用两点间距离公式求解半径.(2)已知弦长,求解直线方程,分类讨论斜率是否存在.小问1详解】点和的中点为,,所以中垂线的,利用点斜式得方程为,联立方程得圆心坐标为,所以圆C的标准方程为.【小问2详解】当过点的直线l斜率不存在时,直线方程为,此时弦长,符合题意.当过点的直线l斜率存在时,设直线方程为,化简得,弦心距,所以,解得,所以直线方程为.综上所述直线方程为或.20、(1);(2),a的取值范围为.【解析】(1)先连结,由为等边三角形,得到,,;再由椭圆定义,即可求出结果;(2)先由题意得到,满足条件的点存在,当且仅当,,,根据三个式子联立,结合题中条件,即可求出结果.【详解】(1)连结,由等边三角形可知:在中,,,,于是,故椭圆C的离心率为;(2)由题意可知,满足条件的点存在,当且仅当,,,即①②③由②③以及得,又由①知,故;由②③得,所以,从而,故;当,时,存在满足条件的点.故,a的取值范围为.【点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.21、(1);(2)5,6,7;(3).【解析】(1)先求得,,进而得到b,a求解;(2)根据题意,由求解;(3)利用古典概型的概率求解.【详解】(1)由题可得,,,设所求线性回归方程为,则,将,代入,得,故所求线性回归方程为.(2)根据题意,,解得:,又,所以的所有可能取值为5,6,7.(3)设其他5个地区分别为,他们选择结果共有25种,具体如下:,,,,,,,,,,,,,,,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度智能家居系统承揽合同规范范本4篇
- 二零二四图书连锁店加盟管理合同协议3篇
- 2025年度智能电网耗材采购及安装合同
- 二零二四年度个人信用借款合同范本3篇
- 2025年度汽车零部件供应链质量标准合同
- 2025年vi策划、执行合同样本(三篇)
- 2025兼职聘用版合同
- 2025年度广告牌广告位租赁及广告内容制作与审核合同
- 2025年度股东退出机制保密合同:规范股权转让流程
- 2025初级中学食堂外墙改造合同书
- 义务教育数学课程标准(2022年版)重点
- 2021上海春考作文题解析及范文(怎样做与成为什么样人)
- 体育馆改造装修工程施工组织设计
- 137案例黑色三分钟生死一瞬间事故案例文字版
- 【魔镜洞察】2024药食同源保健品滋补品行业分析报告
- 钢结构工程施工(第五版) 课件 2项目四 高强度螺栓
- 大学生就业指导(高等院校学生学习就业指导课程)全套教学课件
- 《实验诊断学》课件
- 小学网管的工作总结
- 诊所校验现场审核表
- 派出所上户口委托书
评论
0/150
提交评论