版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京海淀区北京一零一中学2023年高二上数学期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某次射击比赛中,某选手射击一次击中10环的概率是,连续两次均击中10环的概率是,已知某次击中10环,则随后一次击中10环的概率是A. B.C. D.2.若等差数列,其前n项和为,,,则()A.10 B.12C.14 D.163.已知平面直角坐标系内一动点P,满足圆上存在一点Q使得,则所有满足条件的点P构成图形的面积为()A. B.C. D.4.设函数,则下列函数中为奇函数的是()A. B.C. D.5.若直线l与椭圆交于点A、B,线段的中点为,则直线l的方程为()A. B.C. D.6.若函数,当时,平均变化率为3,则等于()A. B.2C.3 D.17.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了多年,如图是由“杨辉三角”拓展而成的三角形数阵,记为图中虚线上的数,,,,…构成的数列的第项,则的值为()A. B.C. D.8.已知直线在x轴和y轴上的截距相等,则a的值是()A或1 B.或C. D.19.设函数在R上可导,其导函数为,且函数的图像如题(8)图所示,则下列结论中一定成立的是A.函数有极大值和极小值B.函数有极大值和极小值C.函数有极大值和极小值D.函数有极大值和极小值10.方程化简的结果是()A. B.C. D.11.已知奇函数是定义在R上的可导函数,的导函数为,当时,有,则不等式的解集为()A. B.C. D.12.将一颗骰子先后抛掷2次,观察向上的点数,则点数之和是4的倍数但不是3的倍数的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,某湖有一半径为的半圆形岸边,现决定在圆心O处设立一个水文监测中心(大小忽略不计),在其正东方向相距的点A处安装一套监测设备.为了监测数据更加准确,在半圆弧上的点B以及湖中的点C处,再分别安装一套监测设备,且,.定义:四边形及其内部区域为“直接监测覆盖区域”,设.则“直接监测覆盖区域”面积的最大值为________14.已知空间向量,,且,则值为______15.已知椭圆C:的左右焦点分别为,,O为坐标原点,以下说法正确的是______①过点的直线与椭圆C交于A,B两点,则的周长为8②椭圆C上存在点P,使得③椭圆C的离心率为④P为椭圆上一点,Q为圆上一点,则线段PQ的最大长度为316.已知是椭圆的左、右焦点,在椭圆上运动,当的值最小时,的面积为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的图像在(为自然对数的底数)处取得极值.(1)求实数的值;(2)若不等式在恒成立,求的取值范围.18.(12分)如图所示在多面体中,平面,四边形是正方形,,,,.(1)求证:直线平面;(2)求平面与平面夹角的余弦值.19.(12分)已知数列满足,记数列的前项和为,且,(1)求数列的通项公式;(2)若,求数列的前100项和20.(12分)已知函数.(1)求函数在处的切线方程;(2)求函数在区间上的最大值与最小值.21.(12分)已知圆:,点A是圆上一动点,点,点是线段的中点.(1)求点的轨迹方程;(2)直线过点且与点的轨迹交于A,两点,若,求直线的方程.22.(10分)已知数列的前项和为,并且满足(1)求数列的通项公式;(2)若,数列的前项和为,求证:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据条件概率的计算公式,得所求概率为,故选B.2、B【解析】由等差数列前项和的性质计算即可.【详解】由等差数列前项和的性质可得成等差数列,,即,得.故选:B.3、D【解析】先找临界情况当PQ与圆C相切时,,进而可得满足条件的点P形成的图形为大圆(包括内部),即求.【详解】当PQ与圆C相切时,,这种情况为临界情况,当P往外时无法找到点Q使,当P往里时,可以找到Q使,故满足条件的点P形成的图形为大圆(包括内部),如图,由圆,可知圆心,半径为1,则大圆的半径为,∴所有满足条件的点P构成图形的面积为.故选:D.【点睛】关键点点睛:本题的关键是找出临界情况时点所满足的条件,进而即可得到动点满足条件的图形,问题即可解决.4、A【解析】求出函数图象的对称中心,结合函数图象平移变换可得结果.【详解】因为,所以,,所以,函数图象的对称中心为,将函数的图象向右平移个单位,再将所得图象向下平移个单位长度,可得到奇函数的图象,即函数为奇函数.故选:A5、A【解析】用点差法即可获解【详解】设.则两式相减得即因为,线段AB的中点为,所以所以所以直线的方程为,即故选:A6、B【解析】直接利用平均变化率的公式求解.【详解】解:由题得.故选:B7、B【解析】根据杨辉三角可得数列的递推公式,结合累加法可得数列的通项公式与.【详解】由已知可得数列的递推公式为,且,且,故,,,,,等式左右两边分别相加得,,故选:B.8、A【解析】分截距都为零和都不为零讨论即可.【详解】当截距都为零时,直线过原点,;当截距不为零时,,.综上:或.故选:A.9、D【解析】则函数增;则函数减;则函数减;则函数增;选D.【考点定位】判断函数的单调性一般利用导函数的符号,当导函数大于0则函数递增,当导函数小于0则函数递减10、D【解析】由方程的几何意义得到是椭圆,进而得到焦点和长轴长求解.【详解】∵方程,表示平面内到定点、的距离的和是常数的点的轨迹,∴它的轨迹是以为焦点,长轴,焦距的椭圆;∴;∴椭圆的方程是,即为化简的结果故选:D11、B【解析】根据给定的不等式构造函数,再探讨函数的性质,借助性质解不等式作答.【详解】依题意,令,因是R上的奇函数,则,即是R上的奇函数,当时,,则有在单调递增,又函数在R上连续,因此,函数在R上单调递增,不等式,于是得,解得,所以原不等式的解集是.故选:B12、B【解析】基本事件总数,再利用列举法求出点数之和是4的倍数但不是3的倍数包含的基本事件的个数,由此能求出点数之和是4的倍数但不是3的倍数的概率【详解】解:将一颗骰子先后抛掷2次,观察向上的点数之和,基本事件总数,点数之和是4的倍数但不是3的倍数包含的基本事件有:,,,,,,,,共8个,则点数之和是4的倍数但不是3的倍数的概率为故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意,根据余弦定理得的值,则四边形的面积表示为,再代入面积公式化简为三角函数,根据三角函数的性质求解最大值即可.【详解】在中,,,,,,则(其中),当时,取最大值,所以“直接监测覆盖区域”面积的最大值.故答案为:.【点睛】解答本题的关键是将四边形的面积表示为,代入面积公式后化简得三角函数的解析式,再根据三角函数的性质求解最大值.14、【解析】利用向量的坐标运算及向量数量积的坐标表示即求.【详解】由题意,空间向量,可得,所以,解得.故答案为:.15、①②④【解析】根据椭圆的几何性质结合的周长计算可判断①;根据,可通过以为直径作圆,是否与椭圆相交判断②;求出椭圆的离心率可判断③;计算椭圆上的点到圆心的距离的最大值,即可判断④.【详解】对于①,由题意知:的周长等于,故①正确;对于②,,故以为直径作圆,与椭圆相交,交点即设为P,故椭圆C上存在点P,使得,故②正确;对于③,,故③错误;对于④,设P为椭圆上一点,坐标为,则,故,因为,所以的最大值为2,故线段PQ的最大长度为2+1=3,故④正确,故答案为:①②④.16、【解析】根据椭圆定义得出,进而对进行化简,结合基本不等式得出的最小值,并求出的值,进而求出面积.【详解】由椭圆定义可知,,所以,,当且仅当,即时取“=”.又,所以.所以,由勾股定理可知:,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由求得的值.(2)由分离常数,通过构造函数法,结合导数求得的取值范围.【小问1详解】因为,所以,因为函数的图像在点处取得极值,所以,,经检验,符合题意,所以;【小问2详解】由(1)知,,所以在恒成立,即对任意恒成立.令,则.设,易得是增函数,所以,所以,所以函数在上为增函数,则,所以.18、(1)证明见解析;(2).【解析】(1)以点为坐标原点,分别以、、为、、轴建立空间直角坐标系,利用空间向量法可证明出直线平面;(2)利用空间向量法可求得平面与平面夹角的余弦值.【小问1详解】证明:因为平面,,以点为坐标原点,分别以、、为、、轴建立空间直角坐标系,则、、、、、,所以,,,设平面的法向量为,依题意有,即,令,可得,,则,平面,因此,平面.【小问2详解】解:由题,,设平面的法向量为,依题意有,即,取,可得,,因此,平面与平面的夹角余弦值为.19、(1)(2)【解析】(1)由题意得出,然后与原式结合,两式相减并化简求出,最后根据等差数列的定义求得答案;(2)结合(1),分别讨论,和三种情况,分别求出,进而求出.【小问1详解】因为,所以,两式相减得,所以又,所以数列是首项为,公差为2的等差数列,所以.【小问2详解】由得,当时,,当时,,当时,,所以.20、(1)(2),【解析】(1)根据导数的几何意义即可求解;(2)根据导数的正负判断f(x)的单调性,根据其单调性即可求最大值和最小值.【小问1详解】,切点为(1,-2),∵,∴切线斜率,切线方程为;【小问2详解】令,解得,1200极大值极小值2∵,,∴当时,,.21、(1);(2)x=1或y=1.【解析】(1)设线段中点为,点,用x,y表示,代入方程即可;(2)分l斜率存在和不存在进行讨论,根据弦长求出l方程.【小问1详解】设线段中点为,点,,,,,,即点C的轨迹方程为.【小问2详解】直线l的斜率不存在时,l为x=1,代入得,则弦长满足题意;直线l斜率存在时,设直线l斜率为k,其方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 放射治疗护士协助放疗
- 体育休闲行业美工体育品牌广告休闲活动海报
- 房地产行业销售培训
- 产前检测室护理工作心得
- 幼儿园大班体育教案《转》含反思
- 第七次人口普查先进个人材料(15篇)
- 安全管理读后感范文6篇
- 2024年度消费金融贷款合同范本详解3篇
- 2024年房地产代理服务合同范本(含法律咨询)3篇
- 2024年供应链金融担保人反担保合同标准模板3篇
- 中药材的性状及真伪鉴别培训-课件
- Go语言Hyperledger区块链开发实战PPT完整全套教学课件
- 高速公路绿色品质工程建设
- 小学语文《黄山奇松》第1课时教学设计
- qingming scroll《清明上河图新解》英文PPT
- 09《马克思主义政治经济学概论(第二版)》第九章
- DG-TJ 08-2367-2021 既有建筑外立面整治设计标准
- 关于反恐防暴的应急预案范文(精选10篇)
- 马拉松氧探头操作手册(范本模板)
- 儿童自闭症康复中心项目可行性论证报告
- LS 8010-2014植物油库设计规范
评论
0/150
提交评论