版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宿州市宿城第一中学2023年数学高二上期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则()A.1 B.2C.3 D.52.已知,是椭圆C的两个焦点,P是C上的一点,若以为直径的圆过点P,且,则C的离心率为()A. B.C. D.3.已知M、N为椭圆上关于短轴对称的两点,A、B分别为椭圆的上下顶点,设、分别为直线的斜率,则的最小值为()A. B.C. D.4.已知函数在上单调递增,则实数a的取值范围为()A. B.C. D.5.已知斜率为1的直线与椭圆相交于A、B两点,O为坐标原点,AB的中点为P,若直线OP的斜率为,则椭圆C的离心率为()A. B.C. D.6.对于实数a,b,c,下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则7.已知数列是等比数列,且,则的值为()A.3 B.6C.9 D.368.已知集合A={1,a,b},B={a2,a,ab},若A=B,则a2021+b2020=()A.-1 B.0C.1 D.29.在的展开式中,的系数为()A. B.5C. D.1010.下列通项公式中,对应数列是递增数列的是()A B.C. D.11.已知双曲线的焦距为,且双曲线的一条渐近线与直线平行,则双曲线的方程为()A. B.C. D.12.已知点B是A(3,4,5)在坐标平面xOy内的射影,则||=()A. B.C.5 D.5二、填空题:本题共4小题,每小题5分,共20分。13.某射箭运动员在一次射箭训练中射靶10次,命中环数如下:8,9,8,10,6,7,9,10,8,5,则命中环数的平均数为___________.14.椭圆上一点到两个焦点的距离之和等于,则的标准方程为______.15.已知直线过抛物线的焦点,且与的对称轴垂直,与交于,两点,,为的准线上一点,则的面积为________16.曲线在点处的切线方程为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线C:(a>0,b>0)的离心率为,且双曲线的实轴长为2(1)求双曲线C的方程;(2)已知直线x-y+m=0与双曲线C交于不同的两点A、B,且线段AB中点在圆x2+y2=17上,求m的值18.(12分)已知集合,.若,且“”是“”的充分不必要条件,求实数a的取值范围19.(12分)在中,角A,B,C的对边分别是a,b,c,且.(1)求角B的大小;(2)若,,且,求a.20.(12分)已知圆过点,,且圆心在直线:上.(1)求圆的方程;(2)若从点发出的光线经过轴反射,反射光线刚好经过圆心,求反射光线的方程.21.(12分)如图,已知在四棱锥中,平面,四边形为直角梯形,,,.(1)求直线与平面所成角的正弦值;(2)在线段上是否存在点,使得二面角的余弦值?若存在,指出点的位置;若不存在,说明理由.22.(10分)已知椭圆的焦距为4,点在G上.(1)求椭圆G方程;(2)过椭圆G右焦点的直线l与椭圆G交于M,N两点,O为坐标原点,若,求直线l的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用导数的定义,以及运算法则,即可求解.【详解】,,所以,所以故选:C2、B【解析】根据题意,在中,设,则,进而根据椭圆定义得,进而可得离心率.【详解】在中,设,则,又由椭圆定义可知则离心率,故选:B.【点睛】本题考查椭圆离心率的计算,考查运算求解能力,是基础题.本题解题的关键在于根据已知条件,结合椭圆的定义,在焦点三角形中根据边角关系求解.3、A【解析】利用为定值即可获解.【详解】设则又,所以所以当且仅当,即,取等故选:A4、D【解析】根据题意参变分离得到,求出的最小值,进而求出实数a的取值范围.【详解】由题意得:在上恒成立,即,其中在处取得最小值,,所以,解得:,故选:D5、B【解析】这是中点弦问题,注意斜率与椭圆a,b之间的关系.【详解】如图:依题意,假设斜率为1的直线方程为:,联立方程:,解得:,代入得,故P点坐标为,由题意,OP的斜率为,即,化简得:,,,;故选:B.6、D【解析】判断不等式的真假,就是要考虑在不等式的变形过程中是否遵守不等式变形的规则.【详解】若,令,,,,,故A错误;若,令c=0,则,故B错误;若,令a=-1,b=-2,,,故C错误;∵,故,根据不等式运算规则,在不等式的两边同时乘以或除以一个正数,不等式的方向不变,故D正确.故选:D.7、C【解析】应用等比中项的性质有,结合已知求值即可.【详解】由等比数列的性质知:,,,所以,又,所以.故选:C8、A【解析】根据A=B,可得两集合元素全部相等,分别求得和ab=1两种情况下,a,b的取值,分析讨论,即可得答案.【详解】因为A=B,若,解得,当时,不满足互异性,舍去,当时,A={1,-1,b},B={1,-1,-b},因为A=B,所以,解得,所以;若ab=1,则,所以,若,解得或1,都不满足题意,舍去,若,解得,不满足互异性,舍去,故选:A【点睛】本题考查两集合相等的概念,在集合相等问题中由一个条件求出参数后需进行代入检验,检验是否满足互异性、题设条件等,属基础题.9、C【解析】首先写出展开式的通项公式,然后结合通项公式确定的系数即可.【详解】展开式的通项公式为:,令可得:,则的系数为:.故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项10、C【解析】根据数列单调性的定义逐项判断即可.【详解】对于A,B选项对应数列是递减数列.对于C选项,,故数列是递增数列.对于D选项,由于.所以数列不是递增数列故选:C.11、B【解析】根据焦点在x轴上的双曲线渐近线斜率为±可求a,b关系,再结合a,b,c关系即可求解﹒【详解】∵双曲线1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0平行,∴,∴b=2a,∵c2=a2+b2,∴a=1,b=2,∴双曲线的方程为故选:B12、C【解析】先求出B(3,4,0),由此能求出||【详解】解:∵点B是点A(3,4,5)在坐标平面Oxy内的射影,∴B(3,4,0),则||==5故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】直接利用求平均数的公式即可求解.【详解】由已知得数据的平均数为,故答案为:.14、【解析】根据椭圆定义求出其长半轴长,再结合焦点坐标即可计算作答.【详解】因椭圆上一点到两个焦点的距离之和等于,则该椭圆长半轴长,而半焦距,于是得短半轴长b,有,所以的标准方程为.故答案为:15、【解析】先设出抛物线方程,写出准线方程和焦点坐标,利用得到抛物线方程,再利用三角形的面积公式进行求解.【详解】设抛物线的方程为,则焦点为,准线方程为,由题意,得,,,所以,解得,所以.故答案为:.16、【解析】先验证点在曲线上,再求导,代入切线方程公式即可【详解】由题,当时,,故点在曲线上求导得:,所以故切线方程为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由实轴长求得,再由离心率得,从而求得得双曲线方程;(2)直线方程与双曲线方程联立方程组,消元后应用韦达定理求得中点坐标,代入圆方程可求得值【小问1详解】由已知,,又,所以,,所以双曲线方程为;【小问2详解】由,得,恒成立,设,,中点为,所以,,,又在圆x2+y2=17上,所以,18、【解析】由题设A是的真子集,结合已知集合的描述列不等式求a的范围.【详解】由“”是“”的充分不必要条件,即A是的真子集,又,,所以,可得,则实数a的取值范围为19、(1);(2).【解析】(1)根据已知条件,运用余弦定理化简可求出;(2)由可求出,利用诱导公式和两角和的正弦公式求出,再利用正弦定理即求.【小问1详解】)∵且,∴,∴,∴,∵,∴.【小问2详解】∵,∴,∴,∵,∴,∵,∴,又∵,,,∴.20、(1);(2)【解析】(1)根据题意设圆心,利用两点坐标公式求距离公式表示出,解出,确定圆心坐标和半径,进而得出圆的标准方程;(2)根据点关于坐标轴对称的点的特征可得,利用直线的两点式方程即可得出结果.【小问1详解】圆过点,,因为圆心在直线::上,设圆心,又圆过点,,所以,即,解得,所以,所以故圆的方程为:;【小问2详解】点关于轴的对称点,则反射光线必经过点和点,由直线的两点式方程可得,即:.21、(1);(2)存在,为上靠近点的三等分点【解析】(1)分别以所在的直线为轴,建立如图所示的空间直角坐标系,求出的坐标以及平面的一个法向量,计算即可求解;(2)假设线段上存在点符合题意,设可得,求出平面的法向量和平面的法向量,利用即可求出的值,即可求解.【详解】(1)分别以所在的直线为轴,建立如图所示的空间直角坐标系,如图所示:则,,,.不妨设平面的一个法向量,则有,即,取.设直线与平面所成的角为,则,所以直线与平面所成角的正弦值为;(2)假设线段上存在点,使得二面角的余弦值.设,则,从而,,.设平面的法向量,则有,即,取.设平面的法向量,则有,即,取.,解得:或(舍),故存在点满足条件,为上靠近点的三等分点【点睛】求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课程设计剪映教程
- 橡胶制品行业的企业战略与市场开拓策略考核试卷
- 炼铁工艺中的能源利用与节约考核试卷
- 玻璃制造中的可持续发展与社会责任考核试卷
- 《农业保险对农业信贷影响的实证研究》
- 玉石饰品与古代寺庙文化的捐赠与修缮考核试卷
- 2024至2030年中国洋甘菊护眼液行业投资前景及策略咨询研究报告
- 《我国基本公共服务均等化水平测度及影响因素研究》
- 《金融科技对绿色发展的影响研究》
- 仓库工作人员固定期限劳动协议样式
- 二上【教学】《我们不乱扔》
- 研发流程(EVT-DVT-PVT-MP)实用文档
- 《中国梦我的梦》课件
- 药品微生物检验基础知识-课件
- 大数据与数学研究课件
- 药剂科运用PDCA循环减少门诊药房药品调剂差错PDCA成果汇报
- 《五育并举 丰盈孩子的心灵》 论文
- 中国电信知识普及100题
- 物品接收单模板(接受联、存根联)
- 16G362 钢筋混凝土结构预埋件
- GA 1811.2-2022传媒设施反恐怖防范要求第2部分:广播电视传输覆盖网设施
评论
0/150
提交评论